Problem running Tensorflow Transformer Tutorial - tensorflow

I was checking the TensorFlow tutorial "Transformer model for language understanding," and I copied the code exactly as it is into my Spyder 4 environment. However, the code shows the following error when running:
AttributeError: 'RepeatedCompositeFieldContainer' object has no attribute 'append'
I checked the code and realized that the error comes from the call function of the MultiHeadAttention class. However, I do not understand what the problem is since the code runs just fine in the Colab notebook.
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
"""Split the last dimension into (num_heads, depth).
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
scaled_attention, attention_weights = scaled_dot_product_attention(
q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q,
num_heads, depth)
concat_attention = tf.reshape(scaled_attention,
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
return output, attention_weights
The error shows when executing the line of q = self.wq(q) in the call function. Any help will be appreciated.
Thanks in advance.

I suspect that the problem is that your protobuf Python package version is too old. It should be >=3.8.0. See the troubleshooting here.
I was seeing the same error message and upgrading protobuf proved to be the solution. In my case there was extra anguish in making sure Python found the upgraded package in the labyrinth of remnants of old Python installations, virtual environments and the PYTHONPATH pointing to an old installation with an old protobuf.

Related

Verifying the implementation of Multihead Attention in Transformer

I have implemented the MultiAttention head in Transformers. There are so many implementations around so it's confusing. Can someone please verify if my implementation is correct:
DotProductAttention referred from: https://www.tensorflow.org/tutorials/text/transformer#setup
import tensorflow as tf
def scaled_dot_product(q,k,v):
#calculates Q . K(transpose)
qkt = tf.matmul(q,k,transpose_b=True)
#caculates scaling factor
dk = tf.math.sqrt(tf.cast(q.shape[-1],dtype=tf.float32))
scaled_qkt = qkt/dk
softmax = tf.nn.softmax(scaled_qkt,axis=-1)
z = tf.matmul(softmax,v)
#shape: (m,Tx,depth), same shape as q,k,v
return z
class MultiAttention(tf.keras.layers.Layer):
def __init__(self,d_model,num_of_heads):
super(MultiAttention,self).__init__()
self.d_model = d_model
self.num_of_heads = num_of_heads
self.depth = d_model//num_of_heads
self.wq = [tf.keras.layers.Dense(self.depth) for i in range(num_of_heads)]
self.wk = [tf.keras.layers.Dense(self.depth) for i in range(num_of_heads)]
self.wv = [tf.keras.layers.Dense(self.depth) for i in range(num_of_heads)]
self.wo = tf.keras.layers.Dense(d_model)
def call(self,x):
multi_attn = []
for i in range(self.num_of_heads):
Q = self.wq[i](x)
K = self.wk[i](x)
V = self.wv[i](x)
multi_attn.append(scaled_dot_product(Q,K,V))
multi_head = tf.concat(multi_attn,axis=-1)
multi_head_attention = self.wo(multi_head)
return multi_head_attention
#Calling the attention
multi = MultiAttention(d_model=512,num_of_heads=8)
m = 5; sequence_length = 4; word_embedding_dim = 512
sample_ip = tf.constant(tf.random.normal(shape=(m,sequence_length,word_embedding_dim)))
attn =multi(sample_ip)
#shape of op (attn): (5,4,512)
In your implementation, in scaled_dot_product you scaled with query but according to the original paper, they used key to normalize. Apart from that, this implementation seems Ok but not general.
class MultiAttention(tf.keras.layers.Layer):
def __init__(self, num_of_heads, out_dim):
super(MultiAttention,self).__init__()
self.out_dim = out_dim
self.num_of_heads = num_of_heads
self.depth = self.out_dim // self.num_of_heads
self.wq = [tf.keras.layers.Dense(self.depth) for i in range(num_of_heads)]
self.wk = [tf.keras.layers.Dense(self.depth) for i in range(num_of_heads)]
self.wv = [tf.keras.layers.Dense(self.depth) for i in range(num_of_heads)]
self.wo = tf.keras.layers.Dense(self.out_dim)
def call(self,x):
multi_attn = []
for i in range(self.num_of_heads):
Q = self.wq[i](x)
K = self.wk[i](x)
V = self.wv[i](x)
multi_attn.append(self.scaled_dot_product(Q,K,V))
multi_head = tf.concat(multi_attn, axis=-1)
multi_head_attention = self.wo(multi_head)
return multi_head_attention
def scaled_dot_product(self, q,k,v):
qkt = tf.matmul(q, k, transpose_b=True)
dk = tf.math.sqrt( tf.cast(k.shape[-1], dtype=tf.float32) )
scaled_qkt = qkt/dk
softmax = tf.nn.softmax(scaled_qkt, axis=-1)
z = tf.matmul(softmax, v)
return z
multi = MultiAttention(num_of_heads=3, out_dim=32)
sample_ip = tf.random.normal(shape=(2, 2, 32)); print(sample_ip.shape)
multi(sample_ip).shape
The general transformer architecture can be demonstrated as follows where the first two linear layers represent query and key and responsible to produce attention weights maps and followed by weighted the value in matrix multiplication fashion.
Image Source.
I understand you're trying to minimize the original TF tutorial code but I think you should add reference first to your original question. In the original implementation, they also returned weighted probabilities or scores along with the weighted feature maps. I think you shouldn't skip that.
The original code that you're following is more general and efficient optimized.
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def scaled_dot_product_attention(self, q, k, v, mask=None):
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
# scale matmul_qk
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
# add the mask to the scaled tensor.
if mask is not None: scaled_attention_logits += (mask * -1e9)
# softmax is normalized on the last axis (seq_len_k) so that the scores
# add up to 1.
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
return output, attention_weights
def split_heads(self, x, batch_size):
"""Split the last dimension into (num_heads, depth).
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, v, k, q, mask=None):
batch_size = tf.shape(q)[0]
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k) # (batch_size, seq_len, d_model)
v = self.wv(v) # (batch_size, seq_len, d_model)
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
return output, attention_weights
FYI, in TF 2.4, the tf.keras.layers.MultiHeadAttention layer is officially added.
layer = tf.keras.layers.MultiHeadAttention(num_heads=2, key_dim=2)
input_tensor = tf.keras.Input(shape=[2, 2, 32]); print(input_tensor.shape)
print(layer(input_tensor, input_tensor).shape)
You can test these two as follows:
# custom layer MHA
multi = MultiHeadAttention(d_model=512, num_heads=2)
y = tf.random.uniform((1, 60, 512))
out, attn = multi(y, k=y, q=y, mask=None)
out.shape, attn.shape
(TensorShape([1, 60, 512]), TensorShape([1, 2, 60, 60]))
# built-in layer
layer = tf.keras.layers.MultiHeadAttention(num_heads=2, key_dim=2)
y = tf.random.uniform((1, 60, 512))
out, attn = layer(y, y, return_attention_scores=True)
out.shape, attn.shape
(TensorShape([1, 60, 512]), TensorShape([1, 2, 60, 60]))

Failed to run the tflite model on Interpreter due to Internal Error

I am trying to build an offline translator for android. My model is highly inspired from this guide: https://www.tensorflow.org/tutorials/text/nmt_with_attention. I just did some modifications to make sure the model is serialisable. (You can find the code for the model at the end)
The model works perfectly on my jupyter notebook. I am using Tensorflow version: 2.3.0-dev20200617, I also was able to generate the tflite file using the following snippet:
converter = tf.lite.TFLiteConverter.from_keras_model(partial_model)
tflite_model = converter.convert()
with tf.io.gfile.GFile('goog_nmt_v2.tflite', 'wb') as f:
f.write(tflite_model)
However when I used the generated tflite model to get predictions on android, it throws the error java.lang.IllegalArgumentException: Internal error: Failed to run on the given Interpreter: tensorflow/lite/kernels/concatenation.cc:73 t->dims->data[d] != t0->dims->data[d] (8 != 1) Node number 84 (CONCATENATION) failed to prepare.
This is strange because I have provided the exact same input dimensions as I did in my jupyter notebook. Here is the java code that is used to test (dummy inputs) if model runs on android:
HashMap<Integer, Object> outputVal = new HashMap<>();
for(int i=0; i<2; i++) outputVal.put(i, new float[1][5]);
float[][] inp_test = new float[1][8];
float[][] enc_hidden = new float[1][1024];
float[][] dec_input = new float[1][1];
float[][] dec_test = new float[1][8];
tfLite.runForMultipleInputsOutputs(new Object[] {inp_test,enc_hidden, dec_input, dec_test},outputVal);
And here are my gradle dependencies:
dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'androidx.appcompat:appcompat:1.1.0'
implementation 'org.tensorflow:tensorflow-lite:0.0.0-nightly'
implementation 'org.tensorflow:tensorflow-lite-select-tf-ops:0.0.0-nightly'
// This dependency adds the necessary TF op support.
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
testImplementation 'junit:junit:4.12'
androidTestImplementation 'androidx.test.ext:junit:1.1.1'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'
}
As the error pointed, there was something wrong with dimensions at node 84. So I went ahead and visualised the tflite file using Netron. I have zoomed the concatenation node, you can find the pic of the node along with input and output dimensions here. You can find the whole generated graph here.
As it turns out, the concatenation node at location 84 isn't actually concatenating, you can see this from the input and output dimensions. It just spits out a 1X1X1 matrix after processing 1X1X1 and 1X1X256 matrix. I know tflite graph isn't same as the original model graph since a lot of operations are replaced and even removed for optimisations but this seems a little odd.
I can't relate this to the error. And if it runs prefectly on jupyter, is it a framework issue or am I missing something? Also, could anyone please explain me what does the error mean by t->dims->data[d] != t0->dims->data[d] what is d?
Please if you have answers to even any one of the question, please write it. If you require any extra details please let me know.
Here is the code for the model:
Tx = 8
def Partial_model():
outputs = []
X = tf.keras.layers.Input(shape=(Tx,))
partial = tf.keras.layers.Input(shape=(Tx,))
enc_hidden = tf.keras.layers.Input(shape=(units,))
dec_input = tf.keras.layers.Input(shape=(1,))
d_i = dec_input
e_h = enc_hidden
X_i = X
enc_output, e_h = encoder(X, enc_hidden)
dec_hidden = enc_hidden
print(dec_input.shape, 'inp', dec_hidden.shape, 'dec_hidd')
for t in range(1, Tx):
print(t, 'tt')
# passing enc_output to the decoder
predictions, dec_hidden, _ = decoder(d_i, dec_hidden, enc_output)
# outputs.append(predictions)
print(predictions.shape, 'pred')
d_i = tf.reshape(partial[:, t], (-1, 1))
print(dec_input.shape, 'dec_input')
predictions, dec_hidden, _ = decoder(d_i, dec_hidden, enc_output)
d_i = tf.squeeze(d_i)
outputs.append(tf.math.top_k(predictions, 5))
return tf.keras.Model(inputs = [X, enc_hidden, dec_input, partial], outputs = [outputs[0][0], outputs[0][1]])
class Encoder():
def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz):
self.batch_sz = batch_sz
self.enc_units = enc_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.enc_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
def __call__(self, x, hidden):
x = self.embedding(x)
output, state = self.gru(x, initial_state = hidden)
print(output.shape, hidden.shape, "out", "hid")
return output, state
def initialize_hidden_state(self):
return tf.zeros((self.batch_sz, self.enc_units))
class BahdanauAttention():
def __init__(self, units):
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def __call__(self, query, values):
# query hidden state shape == (batch_size, hidden size)
# query_with_time_axis shape == (batch_size, 1, hidden size)
# values shape == (batch_size, max_len, hidden size)
# we are doing this to broadcast addition along the time axis to calculate the score
print(query.shape, 'shape')
query_with_time_axis = tf.expand_dims(query, 1)
# score shape == (batch_size, max_length, 1)
# we get 1 at the last axis because we are applying score to self.V
# the shape of the tensor before applying self.V is (batch_size, max_length, units)
print("2")
score = self.V(tf.nn.tanh(
self.W1(query_with_time_axis) + self.W2(values)))
print("3")
# attention_weights shape == (batch_size, max_length, 1)
attention_weights = tf.nn.softmax(score, axis=1)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
class Decoder():
def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
self.dec_units = dec_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.dec_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
self.fc = tf.keras.layers.Dense(vocab_size)
# used for attention
self.attention = BahdanauAttention(self.dec_units)
def __call__(self, x, hidden, enc_output):
# enc_output shape == (batch_size, max_length, hidden_size)
context_vector, attention_weights = self.attention(hidden, enc_output)
print(context_vector.shape, 'c_v', attention_weights.shape, "attention_w")
# x shape after passing through embedding == (batch_size, 1, embedding_dim)
x = self.embedding(x)
# x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
print(x.shape, 'xshape', context_vector.shape, 'context')
expanded_dims = tf.expand_dims(context_vector, 1)
x = tf.concat([expanded_dims, x], axis=-1)
# passing the concatenated vector to the GRU
output, state = self.gru(x)
# output shape == (batch_size * 1, hidden_size)
output = tf.reshape(output, (-1, output.shape[2]))
# output shape == (batch_size, vocab)
x = self.fc(output)
return x, state, attention_weights
You can load the generated .tflite file inside python notebook and pass the same inputs as at Keras model. You have to see the exact outputs because during conversion of model there is no loss of accuracy. If there is a problem there...there will be problem during android operations. If not...everything will work fine. Use below code from Tensorflow guide to run inference in Python:
import numpy as np
import tensorflow as tf
# Load the TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="converted_model.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test the model on random input data.
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
# The function `get_tensor()` returns a copy of the tensor data.
# Use `tensor()` in order to get a pointer to the tensor.
output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
Happy coding!

Unable to understand the behavior of method `build` in tensorflow keras layers (tf.keras.layers.Layer)

Layers in tensorflow keras have a method build that is used to defer the weights creation to a time when you have seen what the input is going to be. a layer's build method
I have a few questions i have not been able to find the answer of:
here it is said that
If you assign a Layer instance as attribute of another Layer, the outer layer will start tracking the weights of the inner layer.
What does it mean to track the weights of a layer?
The same link also mentions that
We recommend creating such sublayers in the init method (since the sublayers will typically have a build method, they will be built when the outer layer gets built).
Does it mean that while running the build method of child class (self), there will an iteration through all the attributes of self and whichever are found to be subclassed from (instances of) tf.keras.layer.Layer will have their build methods run automatically?
I can run this code:
class Net(tf.keras.Model):
"""A simple linear model."""
def __init__(self):
super(Net, self).__init__()
self.l1 = tf.keras.layers.Dense(5)
def call(self, x):
return self.l1(x)
net = Net()
print(net.variables)
But not this:
class Net(tf.keras.Model):
"""A simple linear model."""
def __init__(self):
super(Net, self).__init__()
self.l1 = tf.keras.layers.Dense(5)
def build(self,input_shape):
super().build()
def call(self, x):
return self.l1(x)
net = Net()
print(net.variables)
why?
I would say the build mentioned means, when you build a self-defined tf.keras.Model for example
net = Net()
then you will get all the tf.keras.layers.Layer objects create in __init__, and being stored in net which is a callable object. In this case, it will become a completed object for TF to train later, this is what it said to track. The next time you call net(inputs) you'll can get your outputs.
Here is a example of Tensorflow self-defined decoder with attention
class BahdanauAttention(tf.keras.layers.Layer):
def __init__(self, units):
super(BahdanauAttention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)
def call(self, query, values):
# query hidden state shape == (batch_size, hidden size)
# query_with_time_axis shape == (batch_size, 1, hidden size)
# values shape == (batch_size, max_len, hidden size)
# we are doing this to broadcast addition along the time axis to calculate the score
query_with_time_axis = tf.expand_dims(query, 1)
# score shape == (batch_size, max_length, 1)
# we get 1 at the last axis because we are applying score to self.V
# the shape of the tensor before applying self.V is (batch_size, max_length, units)
score = self.V(tf.nn.tanh(
self.W1(query_with_time_axis) + self.W2(values)))
# attention_weights shape == (batch_size, max_length, 1)
attention_weights = tf.nn.softmax(score, axis=1)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
return context_vector, attention_weights
class Decoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
super(Decoder, self).__init__()
self.batch_sz = batch_sz
self.dec_units = dec_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.dec_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
self.fc = tf.keras.layers.Dense(vocab_size)
# used for attention
self.attention = BahdanauAttention(self.dec_units)
def call(self, x, hidden, enc_output):
# enc_output shape == (batch_size, max_length, hidden_size)
context_vector, attention_weights = self.attention(hidden, enc_output)
# x shape after passing through embedding == (batch_size, 1, embedding_dim)
x = self.embedding(x)
# x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
# passing the concatenated vector to the GRU
output, state = self.gru(x)
# output shape == (batch_size * 1, hidden_size)
output = tf.reshape(output, (-1, output.shape[2]))
# output shape == (batch_size, vocab)
x = self.fc(output)
return x, state, attention_weights
I have tried to put tf.keras.layers.Layer object in call and got really poor outcome, guess that was because if you put it in call then it will be call multiple times while each time a forward-backward propagation happends.

Gradients are None for Custom Convolution Layer

I have implemented the Basic MNIST model with Custom convolution layer as shown below. The problem is that the Gradients are always 'None' for the Custom Layer and so the learning does not happens during back propagation, as the Grad has None values.
I have debugged the outputs of the layers during forward pass and they are OK.
Here is the sample code, for simplicity I have passed image of 'Ones' and have just returned the matrix from the custom layer.
I have tried my best but could make it work any help is very much appreciated in advance
following code is executable and raises the
warning
:tensorflow:Gradients do not exist for variables ['cnn/custom_conv2d/kernel:0', 'cnn/custom_conv2d/bias:0', 'cnn/custom_conv2d_1/kernel:0', 'cnn/custom_conv2d_1/bias:0', 'cnn/custom_conv2d_2/kernel:0', 'cnn/custom_conv2d_2/bias:0'] when minimizing the loss.
import numpy as np
import tensorflow as tf
from grpc.beta import interfaces
class CustomConv2D(tf.keras.layers.Conv2D):
def __init__(self, filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='glorot_uniform',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
__name__ = 'CustomConv2D',
**kwargs
):
super(CustomConv2D, self).__init__(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
activation=activation,
use_bias=use_bias,
kernel_initializer=kernel_initializer,
bias_initializer=bias_initializer,
kernel_regularizer=kernel_regularizer,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
kernel_constraint=kernel_constraint,
bias_constraint=bias_constraint,
**kwargs )
def call(self, input):
(unrolled_mat, filters, shape) = self.prepare(input)
#unrolled_mat=unrolled inputs
#filters=unrolled kernels of the lAYER
#convolution through unrolling
conv_result = tf.tensordot(unrolled_mat, filters, axes=1)
result=tf.convert_to_tensor(tf.reshape(conv_result, shape))
return result
def prepare(self, matrix):
batches,rows,cols,channels=matrix.shape
kernel_size = self.kernel_size[0]
unrolled_matrices=None
# start = timer()
for batch in range(batches):
unrolled_maps=None
for chanel in range(channels):
unrolled_map = self.unroll(batch, cols, kernel_size, matrix, rows,chanel)
if unrolled_maps is None:
unrolled_maps = unrolled_map
else:
unrolled_maps=np.append(unrolled_maps,unrolled_map,axis=1)
unrolled_maps = np.reshape(unrolled_maps,(-1,unrolled_maps.shape[0],unrolled_maps.shape[1]))
if unrolled_matrices is None:
unrolled_matrices = unrolled_maps
else:
unrolled_matrices = np.concatenate((unrolled_matrices, unrolled_maps))
kernels=self.get_weights()
kernels=np.reshape(kernels[0],(unrolled_matrices[0].shape[1],-1))
shp=(batches,rows-(kernel_size-1),cols-(kernel_size-1),self.filters)
matrix=unrolled_matrices
return (matrix, kernels, shp)
def unroll(self, batch, cols, kernel_size, matrix, rows, chanel):
# a=np.zeros((shape))
unrolled_feature_map = None
for x in range(0, rows - (kernel_size - 1)):
for y in range(0, (cols - (kernel_size - 1))):
temp_row = None # flattened kernal at single position
for k in range(kernel_size):
for l in range(kernel_size):
if temp_row is None:
temp_row = matrix[batch, x + k, y + l, chanel]
# print(matrix[batch, x + k, y + l])
else:
temp_row = np.append(temp_row, matrix[batch, x + k, y + l, chanel])
# print(matrix[batch, x + k, y + l])
if unrolled_feature_map is None:
unrolled_feature_map = np.reshape(temp_row,
(-1, kernel_size * kernel_size)) # first row of unrolled matrix added
else:
unrolled_feature_map = np.concatenate((unrolled_feature_map, np.reshape(temp_row,
(-1, kernel_size * kernel_size)))) # concatinate subsequent row to un_mat
unrolled_feature_map = np.reshape(unrolled_feature_map,( unrolled_feature_map.shape[0], unrolled_feature_map.shape[1]))
# print(unrolled_feature_map.shape)
matrix=unrolled_feature_map
return matrix
class CNN(tf.keras.Model):
def __init__(self):
super(CNN, self).__init__()
self.learning_rate = 0.001
self.momentum = 0.9
self.optimizer = tf.keras.optimizers.Adam(self.learning_rate, self.momentum)
self.conv1 = CustomConv2D(filters = 6, kernel_size= 3, activation = 'relu') ## valid means no padding
self.pool1 = tf.keras.layers.MaxPool2D(pool_size=2) # default stride??-
self.conv2 = CustomConv2D(filters = 16, kernel_size = 3, activation = 'relu')
self.pool2 = tf.keras.layers.MaxPool2D(pool_size = 2)
self.conv3 = CustomConv2D(filters=120, kernel_size=3, activation='relu')
self.flatten = tf.keras.layers.Flatten()
self.fc1 = tf.keras.layers.Dense(units=82,kernel_initializer='glorot_uniform')
self.fc2 = tf.keras.layers.Dense(units=10, activation = 'softmax',kernel_initializer='glorot_uniform')
def call(self, x):
x = self.conv1(x) # shap(32,26,26,6) all (6s 3s 6s 3s)
x = self.pool1(x) # shap(32,13,13,6) all (6s)
x = self.conv2(x) # shap(32,11,11,16) all(324s)
x = self.pool2(x) # shap(32,5,5,16)
x = self.conv3(x) # shap(32,3,3,120)all(46656)
x = self.flatten(x) # shap(32,1080)
x = self.fc1(x) # shap(32,82)
x = self.fc2(x) # shap(32,10)
return x
def feedForward(self, image, label):
accuracy_object = tf.metrics.Accuracy()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
with tf.GradientTape() as tape:
feedForwardCompuation = self(image, training=True)
self.loss_value = loss_object(label, feedForwardCompuation)
grads = tape.gradient(self.loss_value, self.variables)
self.optimizer.apply_gradients(zip(grads, self.variables))
accuracy = accuracy_object(tf.argmax(feedForwardCompuation, axis=1, output_type=tf.int32), label)
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train=x_train.astype('float32')
y_train = y_train.astype('float32')
image=x_train[0].reshape((1,28,28,1))
label=y_train[0]
cnn=CNN()
cnn.feedForward(image,label)
UPDATE: I am not using the builtin TF conv fucntion rather I am implementing my own custom convolution operation via Matrix unrolling method(unrolled map*unrolled filters). But the Tap.gradient returns "None" for the custom layers however when I use the builtin conv2d function of TF then it works fine!
I have Added the actual code of the operation
Snapshot of grads while debugging
Problem is that the Convolution Operation is not happening in the Class, CustomConv2D. Neither the call Method, nor the customConv Method is performing Convolution Operation, but it is just returning the Input, as it is.
Replacing the line, return self.customConv(matrix) in the call method of CustomConv2D Class with return super(tf.keras.layers.Conv2D, self).call(matrix) will perform the actual Convolutional Operation.
One more change is to invoke the call method of CNN class by including the line, _ = cnn(X_reshaped) before the line, cnn.feedForward(image,label)
By doing the above 2 changes, Gradients will be added.

Input to attention in TensorFlow 2.0 tutorial on "Neural machine translation with attention"

There is one question when I learned the example "Neural machine translation with attention".
class Decoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):
super(Decoder, self).__init__()
self.batch_sz = batch_sz
self.dec_units = dec_units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.dec_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
self.fc = tf.keras.layers.Dense(vocab_size)
# used for attention
self.attention = BahdanauAttention(self.dec_units)
def call(self, x, hidden, enc_output):
# enc_output shape == (batch_size, max_length, hidden_size)
context_vector, attention_weights = self.attention(hidden, enc_output)
# x shape after passing through embedding == (batch_size, 1, embedding_dim)
x = self.embedding(x)
# x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
# passing the concatenated vector to the GRU
output, state = self.gru(x)
# output shape == (batch_size * 1, hidden_size)
output = tf.reshape(output, (-1, output.shape[2]))
# output shape == (batch_size, vocab)
x = self.fc(output)
return x, state, attention_weights
Why the attention weight is calculated by encoder_output and encoder_hidden and context vector is contacted with decoder_embedding. In my opinion, the attention weight should be calculated by encoder_output and every single hidden of decoder_output, and context vector should be contacted with decoder_output.
Maybe I have not understood the seq2seq with attention completely?
The attention is called in every step of the decoder. The inputs to the decoder step are:
previously decoded token x (or ground-truth token while training)
previous hidden state of the decoder hidden
hidden states of the encoder enc_output
As you correctly say, the attention the single decoder hidden states and all encoder hidden states as input which gives you the context vector.
context_vector, attention_weights = self.attention(hidden, enc_output)
The context vector gets concatenated with the embedding only after calling the attention mechanism when it is used as the input of the GRU cell.
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
output, state = self.gru(x)
The variable output will become hidden in the next step of the decoder.