This question could be generalized, but it crept up while creating a Kotlin #Entity class within the Spring Data framework. Each entity shall extend AbstractPersistable, and it usually has quite a number of fields:
#Entity
class Book(
var author: String? = null,
var title: String? = null
): AbstractPersistable<Int>()
Now this snippet shows a tiny table. You can easily imagine more fields (columns), and usually each field has a comment, a #Column or #OneToMany annotation, and then blank lines between them. It soon will fill a page. That’s not the bad thing (in my opinion).
What bugs me with that code is that the super-class (or any implemented interfaces) get separated from the class Book line so much – it becomes hidden. This happens whenever you use Kotlin’s primary constructor feature. It’s great in general, but moves the focus of class definition from inheritance to data.
What are the stylistic options?
Get used to it. New language, new patterns.
Do not use this syntax. Use the constructor keyword instead. Mirrors what Java would look like. However, to use the class as before, you have to swallow a bitter pill: Create the constructor by hand, including not only all the assigments, but ideally also all the default values for all the fields as well, basically duplicating the code.
The third perfect way that I cannot think of at the moment.
From my understanding the closest you could get to what you're looking for is this:
class Book private constructor(): AbstractPersistable<Int>() {
constructor(
author: String? = null,
title: String? = null
) : this()
}
Basically making the primary constructor private, and forcing to use secondary constructor.
I would like to point this part:
"this moves the focus of class definition from inheritance to data"
That is actually one of Kotlin intentions, have more composition over inheritance. Same goes for how they built by into the language.
Related
I have am trying to create a recursive data class like so:
data class AttributeId (
val name: String,
val id: Int,
val children: List<AttributeId>?
)
The thing I'm struggling with now is building the data class by iterating over a source object.
How do I recursively build this object?? Is a data class the wrong solution here?
EDIT: Some more information about the Source object from which I want to construct my data class instance
The source object is a Java Stream that essentially* has the following shape:
public Category(final String value,
final Integer id,
final List<Category> children) {
this.value = value;
this.id = id;
this.children = children;
}
(For brevity the fields I don't care about have been removed from example)
I think I need to map over this stream and call a recursive function in order to construct the AttributeId data class, but my attempts seem to end in a stack overflow and a lot of confusion!
I don't think there's anything necessarily wrong with a data class that contains references to others.
There are certainly some gotchas. For example:
If the list were mutable, or if its field was mutable (i.e. var rather than val), then you'd have to take care because its hashcode &c could change.
And if the chain of links could form a loop (i.e. you could follow the links and end up back at the original class), that could be very dangerous. (E.g. calling a method such as toString() or hashCode() might either get stuck in an endless loop or crash the thread with a StackOverflowError. You'd have to prevent that by overriding those methods to prevent them recursing.) But that couldn't happen if the list and field were both immutable.
None of these issues are specific to data classes, though; a normal class could suffer the same issues (especially if you overrode methods like toString() or hashCode() without taking care). So whether you make this a data class comes down to whether it feels like one: whether its primary purpose is to hold data, and/or whether the automatically-generated methods match how you want it to behave.
As Tenfour04 says, it depends what you're constructing these from. If it naturally forms a tree structure, then this could be a good representation for it.
Obviously, you wouldn't be able to construct a parent before any of its children. (In particular, the first instance you create would have to have either null or an empty list for its children.) This would probably mean traversing the source in post-order. The rest should fall out naturally from that.
I'm a beginner in Kotlin and recently read about Sealed Classes. But from the doc the only think I actually get is that they are exist.
The doc stated, that they are "representing restricted class hierarchies". Besides that I found a statement that they are enums with superpower. Both aspects are actually not clear.
So can you help me with the following questions:
What are sealed classes and what is the idiomatic way of using ones?
Does such a concept present in other languages like Python, Groovy or C#?
UPDATE:
I carefully checked this blog post and still can't wrap my head around that concept. As stated in the post
Benefit
The feature allows us to define class hierarchies that are
restricted in their types, i.e. subclasses. Since all subclasses need
to be defined inside the file of the sealed class, there’s no chance
of unknown subclasses which the compiler doesn’t know about.
Why the compiler doesn't know about other subclasses defined in other files? Even IDE knows that. Just press Ctrl+Alt+B in IDEA on, for instance, List<> definition and all implementations will be shown even in other source files. If a subclass can be defined in some third-party framework, which not used in the application, why should we care about that?
Say you have a domain (your pets) where you know there is a definite enumeration (count) of types. For example, you have two and only two pets (which you will model with a class called MyPet). Meowsi is your cat and Fido is your dog.
Compare the following two implementations of that contrived example:
sealed class MyPet
class Meowsi : MyPet()
class Fido : MyPet()
Because you have used sealed classes, when you need to perform an action depending on the type of pet, then the possibilities of MyPet are exhausted in two and you can ascertain that the MyPet instance will be exactly one of the two options:
fun feed(myPet: MyPet): String {
return when(myPet) {
is Meowsi -> "Giving cat food to Meowsi!"
is Fido -> "Giving dog biscuit to Fido!"
}
}
If you don't use sealed classes, the possibilities are not exhausted in two and you need to include an else statement:
open class MyPet
class Meowsi : MyPet()
class Fido : MyPet()
fun feed(myPet: MyPet): String {
return when(myPet) {
is Mewosi -> "Giving cat food to Meowsi!"
is Fido -> "Giving dog biscuit to Fido!"
else -> "Giving food to someone else!" //else statement required or compiler error here
}
}
In other words, without sealed classes there is not exhaustion (complete coverage) of possibility.
Note that you could achieve exhaustion of possiblity with Java enum however these are not fully-fledged classes. For example, enum cannot be subclasses of another class, only implement an interface (thanks EpicPandaForce).
What is the use case for complete exhaustion of possibilities? To give an analogy, imagine you are on a tight budget and your feed is very precious and you want to ensure you don't end up feeding extra pets that are not part of your household.
Without the sealed class, someone else in your home/application could define a new MyPet:
class TweetiePie : MyPet() //a bird
And this unwanted pet would be fed by your feed method as it is included in the else statement:
else -> "Giving food to someone else!" //feeds any other subclass of MyPet including TweetiePie!
Likewise, in your program exhaustion of possibility is desirable because it reduces the number of states your application can be in and reduces the possibility of bugs occurring where you have a possible state where behaviour is poorly defined.
Hence the need for sealed classes.
Mandatory else
Note that you only get the mandatory else statement if when is used as an expression. As per the docs:
If [when] is used as an expression, the value of the satisfied branch becomes the value of the overall expression [... and] the else branch is mandatory, unless the compiler can prove that all possible cases are covered with branch conditions
This means you won't get the benefit of sealed classes for something like this):
fun feed(myPet: MyPet): Unit {
when(myPet) {
is Meowsi -> println("Giving cat food to Meowsi!") // not an expression so we can forget about Fido
}
}
To get exhaustion for this scenario, you would need to turn the statement into an expression with return type.
Some have suggested an extension function like this would help:
val <T> T.exhaustive: T
get() = this
Then you can do:
fun feed(myPet: MyPet): Unit {
when(myPet) {
is Meowsi -> println("Giving cat food to Meowsi!")
}.exhaustive // compiler error because we forgot about Fido
}
Others have suggested that an extension function pollutes the namespace and other workarounds (like compiler plugins) are required.
See here for more about this problem.
Sealed classes are easier to understand when you understand the kinds of problems they aim to solve. First I'll explain the problems, then I'll introduce the class hierarchies and the restricted class hierarchies step by step.
We'll take a simple example of an online delivery service where we use three possible states Preparing, Dispatched and Delivered to display the current status of an online order.
Problems
Tagged class
Here we use a single class for all the states. Enums are used as type markers. They are used for tagging the states Preparing, Dispatched and Delivered :
class DeliveryStatus(
val type: Type,
val trackingId: String? = null,
val receiversName: String? = null) {
enum class Type { PREPARING, DISPATCHED, DELIVERED }
}
The following function checks the state of the currently passed object with the help of enums and displays the respective status:
fun displayStatus(state: DeliveryStatus) = when (state.type) {
PREPARING -> print("Preparing for dispatch")
DISPATCHED -> print("Dispatched. Tracking ID: ${state.trackingId ?: "unavailable"}")
DELIVERED -> print("Delivered. Receiver's name: ${state.receiversName ?: "unavailable"}")
}
As you can see, we are able to display the different states properly. We also get to use exhaustive when expression, thanks to enums. But there are various problems with this pattern:
Multiple responsibilities
The class DeliveryStatus has multiple responsibilities of representing different states. So it can grow bigger, if we add more functions and properties for different states.
More properties than needed
An object has more properties than it actually needs in a particular state. For example, in the function above, we don't need any property for representing the Preparing state. The trackingId property is used only for the Dispatched state and the receiversName property is concerned only with the Delivered state. The same is true for functions. I haven't shown functions associated with states to keep the example small.
No guarantee of consistency
Since these unused properties can be set from unrelated states, it's hard to guarantee the consistency of a particular state. For example, one can set the receiversName property on the Preparing state. In that case, the Preparing will be an illegal state, because we can't have a receiver's name for the shipment that hasn't been delivered yet.
Need to handle null values
Since not all properties are used for all states, we have to keep the properties nullable. This means we also need to check for the nullability. In the displayStatus() function we check the nullability using the ?:(elvis) operator and show unavailable, if that property is null. This complicates our code and reduces readability. Also, due to the possibility of a nullable value, the guarantee for consistency is reduced further, because the null value of receiversName in Delivered is an illegal state.
Introducing Class Hierarchies
Unrestricted class hierarchy: abstract class
Instead of managing all the states in a single class, we separate the states in different classes. We create a class hierarchy from an abstract class so that we can use polymorphism in our displayStatus() function:
abstract class DeliveryStatus
object Preparing : DeliveryStatus()
class Dispatched(val trackingId: String) : DeliveryStatus()
class Delivered(val receiversName: String) : DeliveryStatus()
The trackingId is now only associated with the Dispatched state and receiversName is only associated with the Delivered state. This solves the problems of multiple responsibilities, unused properties, lack of state consistency and null values.
Our displayStatus() function now looks like the following:
fun displayStatus(state: DeliveryStatus) = when (state) {
is Preparing -> print("Preparing for dispatch")
is Dispatched -> print("Dispatched. Tracking ID: ${state.trackingId}")
is Delivered -> print("Delivered. Received by ${state.receiversName}")
else -> throw IllegalStateException("Unexpected state passed to the function.")
}
Since we got rid of null values, we can be sure that our properties will always have some values. So now we don't need to check for null values using the ?:(elvis) operator. This improves code readability.
So we solved all the problems mentioned in the tagged class section by introducing a class hierarchy. But the unrestricted class hierarchies have the following shortcomings:
Unrestricted Polymorphism
By unrestricted polymorphism I mean that our function displayStatus() can be passed a value of unlimited number of subclasses of the DeliveryStatus. This means we have to take care of the unexpected states in displayStatus(). For this, we throw an exception.
Need for the else branch
Due to unrestricted polymorphism, we need an else branch to decide what to do when an unexpected state is passed. If we use some default state instead of throwing an exception and then forget to take care of any newly added subclass, then that default state will be displayed instead of the state of the newly created subclass.
No exhaustive when expression
Since the subclasses of an abstract class can exist in different packages and compilation units, the compiler doesn't know all the possible subclasses of the abstract class. So it won't flag an error at compile time, if we forget to take care of any newly created subclasses in the when expression. In that case, only throwing an exception can help us. Unfortunately, we'll know about the newly created state only after the program crashes at runtime.
Sealed Classes to the Rescue
Restricted class hierarchy: sealed class
Using the sealed modifier on a class does two things:
It makes that class an abstract class. Since Kotlin 1.5, you can use a sealed interface too.
It makes it impossible to extend that class outside of that file. Since Kotlin 1.5 the same file restriction has been removed. Now the class can be extended in other files too but they need to be in the same compilation unit and in the same package as the sealed type.
sealed class DeliveryStatus
object Preparing : DeliveryStatus()
class Dispatched(val trackingId: String) : DeliveryStatus()
class Delivered(val receiversName: String) : DeliveryStatus()
Our displayStatus() function now looks cleaner:
fun displayStatus(state: DeliveryStatus) = when (state) {
is Preparing -> print("Preparing for Dispatch")
is Dispatched -> print("Dispatched. Tracking ID: ${state.trackingId}")
is Delivered -> print("Delivered. Received by ${state.receiversName}")
}
Sealed classes offer the following advantages:
Restricted Polymorphism
By passing an object of a sealed class to a function, you are also sealing that function, in a sense. For example, now our displayStatus() function is sealed to the limited forms of the state object, that is, it will either take Preparing, Dispatched or Delivered. Earlier it was able to take any subclass of DeliveryStatus. The sealed modifier has put a limit on polymorphism. As a result, we don't need to throw an exception from the displayStatus() function.
No need for the else branch
Due to restricted polymorphism, we don't need to worry about other possible subclasses of DeliveryStatus and throw an exception when our function receives an unexpected type. As a result, we don't need an else branch in the when expression.
Exhaustive when expression
Just like all the possible values of an enum class are contained inside the same class, all the possible subtypes of a sealed class are contained inside the same package and the same compilation unit. So, the compiler knows all the possible subclasses of this sealed class. This helps the compiler to make sure that we have covered(exhausted) all the possible subtypes in the when expression. And when we add a new subclass and forget to cover it in the when expression, it flags an error at compile time.
Note that in the latest Kotlin versions, your when is exhaustive for the when expressions as well the when statements.
Why in the same file?
The same file restriction has been removed since Kotlin 1.5. Now you can define the subclasses of the sealed class in different files but the files need to be in the same package and the same compilation unit. Before 1.5, the reason that all the subclasses of a sealed class needed to be in the same file was that it had to be compiled together with all of its subclasses for it to have a closed set of types. If the subclasses were allowed in other files, the build tools like Gradle would have to keep track of the relations of files and this would affect the performance of incremental compilation.
IDE feature: Add remaining branches
When you just type when (status) { } and press Alt + Enter, Enter, the IDE automatically generates all the possible branches for you like the following:
when (state) {
is Preparing -> TODO()
is Dispatched -> TODO()
is Delivered -> TODO()
}
In our small example there are just three branches but in a real project you could have hundreds of branches. So you save the effort of manually looking up which subclasses you have defined in different files and writing them in the when expression one by one in another file. Just use this IDE feature. Only the sealed modifier enables this.
That's it! Hope this helps you understand the essence of sealed classes.
If you've ever used an enum with an abstract method just so that you could do something like this:
public enum ResultTypes implements ResultServiceHolder {
RESULT_TYPE_ONE {
#Override
public ResultOneService getService() {
return serviceInitializer.getResultOneService();
}
},
RESULT_TYPE_TWO {
#Override
public ResultTwoService getService() {
return serviceInitializer.getResultTwoService();
}
},
RESULT_TYPE_THREE {
#Override
public ResultThreeService getService() {
return serviceInitializer.getResultThreeService();
}
};
When in reality what you wanted is this:
val service = when(resultType) {
RESULT_TYPE_ONE -> resultOneService,
RESULT_TYPE_TWO -> resultTwoService,
RESULT_TYPE_THREE -> resultThreeService
}
And you only made it an enum abstract method to receive compile time guarantee that you always handle this assignment in case a new enum type is added; then you'll love sealed classes because sealed classes used in assignments like that when statement receive a "when should be exhaustive" compilation error which forces you to handle all cases instead of accidentally only some of them.
So now you cannot end up with something like:
switch(...) {
case ...:
...
default:
throw new IllegalArgumentException("Unknown type: " + enum.name());
}
Also, enums cannot extend classes, only interfaces; while sealed classes can inherit fields from a base class. You can also create multiple instances of them (and you can technically use object if you need the subclass of the sealed class to be a singleton).
I asked a question at How to design a complex class which incude some classes to make expansion easily in future in Kotlin? about how to design a complex class which incude some classes to make expansion easily in future in Kotlin.
A expert named s1m0nw1 give me a great answer as the following code.
But I don't know why he want to change MutableList to List at https://stackoverflow.com/posts/47960036/revisions , I can get the correct result when I use MutableList. Could you tell me?
The code
interface DeviceDef
data class BluetoothDef(val Status: Boolean = false) : DeviceDef
data class WiFiDef(val Name: String, val Status: Boolean = false) : DeviceDef
data class ScreenDef(val Name: String, val size: Long) : DeviceDef
class MDetail(val _id: Long, val devices: List<DeviceDef>) {
inline fun <reified T> getDevice(): T {
return devices.filterIsInstance(T::class.java).first()
}
}
Added
I think that mutableListOf<DeviceDef> is better than ListOf<DeviceDef> in order to extend in future.
I can use aMutableList.add() function to extend when I append new element of mutableListOf<DeviceDef>.
If I use ListOf<DeviceDef>, I have to construct it with listOf(mBluetoothDef1, mWiFiDef1, //mOther), it's not good. Right?
var aMutableList= mutableListOf<DeviceDef>()
var mBluetoothDef1= BluetoothDef(true)
var mWiFiDef1= WiFiHelper(this).getWiFiDefFromSystem()
aMutableList.add(mBluetoothDef1)
aMutableList.add(mWiFiDef1)
// aMutableList.add(mOther) //This is extension
var aMDetail1= MDetail(myID, aMutableList)
Sorry for not giving an explanation in the first place. The differences are explained in the docs.:
Unlike many languages, Kotlin distinguishes between mutable and immutable collections (lists, sets, maps, etc). Precise control over exactly when collections can be edited is useful for eliminating bugs, and for designing good APIs.
It is important to understand up front the difference between a read-only view of a mutable collection, and an actually immutable collection. Both are easy to create, but the type system doesn't express the difference, so keeping track of that (if it's relevant) is up to you.
The Kotlin List<out T> type is an interface that provides read-only operations like size, get and so on. Like in Java, it inherits from Collection<T> and that in turn inherits from Iterable<T>. Methods that change the list are added by the MutableList<T> interface. [...]
The List interface provides a read-only view so that you cannot e.g add new elements to the list which has many advantages for instance in multithreaded environments. There may be situations in which you will use MutableList instead.
I also recommend the following discussion:
Kotlin and Immutable Collections?
EDIT (added content):
You can do this is a one-liner without any add invocation:
val list = listOf(mBluetoothDef1, mWiFiDef1)
I was going through Kotlin reference document and then I saw this.
The class declaration consists of the class name, the class header
(specifying its type parameters, the primary constructor etc.) and the
class body, surrounded by curly braces. Both the header and the body
are optional; if the class has no body, curly braces can be omitted.
class Empty
Now I'm wondering what is the use of such class declaration without header and body
Empty classes can be useful to represent state along with other classes, especially when part of a sealed class. Eg.
sealed class MyState {
class Empty : MyState()
class Loading : MyState()
data class Content(content: String) : MyState()
data class Error(error: Throwable) : MyState()
}
In this way you can think of them like java enum entries with more flexibility.
tldr: they want to demonstrate it's possible
even an empty class is of type Any and therefore has certain methods automatically. I think in most cases, this does not make sense, but in the documentation case it's used to show the simplest possible definition of a class.
The Java equivalent would be:
public final class Empty {
}
From practical programmer day to day perspective empty class makes no much sense indeed. There are however cases where this behavior is desirable.
There are scenarios where we want to make sure that we want to define a class and at the same time, we want to make sure that instance of this class will never be created (type created from such class is called empty type or uninhabited type).
Perfect example of this is Kotlin Nothing class with do not have class declaration header and body (notice that it also have private constructor)
https://github.com/JetBrains/kotlin/blob/master/core/builtins/native/kotlin/Nothing.kt
There are few usages for Nothing in Kotlin language. One of them would be a function that does not return a value (do not confuse this with Unit where the function returns actually returns a value of type Unit). A typical example is an assertFail method used for testing or method that exits current process. Both methods will never actually return any value yet we need to explicitly say tell it to a compiler using special type (Nothing).
fun assertFail():Nothing {
throw Exception()
}
Nothing can be also used with start projections where type Function<*, String> can be in-projected to Function<in Nothing, String>
Another usage for empty class is type token or placeholder:
class DatabaseColumnName
class DatabaseTableName
addItem(DatabaseColumnName.javaClass, "Age")
addItem(DatabaseTableName.javaClass, "Person")
...
getItemsByType(DatabaseTableName.javaClass)
Some languages are using empty classes for metaprogramming although I haven't explored this part personally:
Advantages of an empty class in C++
An example of empty class usage from Spring Boot framework:
#SpringBootApplication
class FooApplication
fun main(args: Array<String>) {
runApplication<FooApplication>(*args)
}
It doesn't make much sense as a final result. However it can be useful in active development and at a design time as a placeholder of some sort, which may be expanded in the future. Such terse syntax allows you to quickly define such new types as needed. Something like:
class Person (
val FirstName: String,
val LastName: String,
// TODO
val Address: Address
)
class Address
I think main reason this is specifically mentioned in documentation is to demonstrate, that language syntax in general can be terse, not that it is specifically created for common usage.
Sealed classes, in a sense, an extension of enum classes: the set of values for an enum type is also restricted, but each enum constant exists only as a single instance, whereas a subclass of a sealed class can have multiple instances which can contain state.
reference
I had a discussion at work regarding "Inheritance in domain model is complicating developers life". I'm an OO programmer so I started to look for arguments that having inheritance in domain model will ease the developer life actually instead of having switches all over the place.
What I would like to see is this :
class Animal {
}
class Cat : Animal {
}
class Dog : Animal {
}
What the other colleague is saying is :
public enum AnimalType {
Unknown,
Cat,
Dog
}
public class Animal {
public AnimalType Type { get; set; }
}
How do I convince him (links are WELCOME ) that a class hierarchy would be better than having a enum property for this kind of situations?
Thanks!
Here is how I reason about it:
Only use inheritance if the role/type will never change.
e.g.
using inheritance for things like:
Fireman <- Employee <- Person is wrong.
as soon as Freddy the fireman changes job or becomes unemployed, you have to kill him and recreate a new object of the new type with all of the old relations attached to it.
So the naive solution to the above problem would be to give a JobTitle enum property to the person class.
This can be enough in some scenarios, e.g. if you don't need very complex behaviors associated with the role/type.
The more correct way would be to give the person class a list of roles.
Each role represents e.g an employment with a time span.
e.g.
freddy.Roles.Add(new Employement( employmentDate, jobTitle ));
or if that is overkill:
freddy.CurrentEmployment = new Employement( employmentDate, jobTitle );
This way , Freddy can become a developer w/o we having to kill him first.
However, all my ramblings still haven't answered if you should use an enum or type hierarchy for the jobtitle.
In pure in mem OO I'd say that it's more correct to use inheritance for the jobtitles here.
But if you are doing O/R mapping you might end up with a bit overcomplex data model behind the scenes if the mapper tries to map each sub type to a new table.
So in such cases, I often go for the enum approach if there is no real/complex behavior associated with the types.
I can live with a "if type == JobTitles.Fireman ..." if the usage is limited and it makes things easer or less complex.
e.g. the Entity Framework 4 designer for .NET can only map each sub type to a new table. and you might get an ugly model or alot of joins when you query your database w/o any real benefit.
However I do use inheritance if the type/role is static.
e.g. for Products.
you might have CD <- Product and Book <- Product.
Inheritance wins here because in this case you most likely have different state associated with the types.
CD might have a number of tracks property while a book might have number of pages property.
So in short, it depends ;-)
Also, at the end of the day you will most likely end up with a lot of switch statements either way.
Let's say you want to edit a "Product" , even if you use inheritance, you will probably have code like this:
if (product is Book)
Response.Redicted("~/EditBook.aspx?id" + product.id);
Because encoding the edit book url in the entity class would be plain ugly since it would force your business entites to know about your site structure etc.
Having an enum is like throwing a party for all those Open/Closed Principle is for suckers people.
It invites you to check if an animal is of a certain type and then apply custom logic for each type. And that can render horrible code, which makes it hard to continue building on your system.
Why?
Doing "if this type, do this, else do that" prevents good code.
Any time you introduce a new type, all those ifs get invalid if the new type is not handled. In larger systems, it's hard to find all those ifs, which will lead to bugs eventually.
A much better approach is to use small, well-defined feature interfaces (Interface segregation principle).
Then you will only have an if but no 'else' since all concretes can implement a specific feature.
Compare
if (animal is ICanFly flyer)
flyer.Sail();
to
// A bird and a fly are fundamentally different implementations
// but both can fly.
if (animal is Bird b)
b.Sail();
else if (animal is Fly f)
b.Sail();
See? the former one needs to be checked once while the latter has to be checked for every animal that can fly.
Enums are good when:
The set of values is fixed and never or very rarely changes.
You want to be able to represent a union of values (i.e. combining flags).
You don't need to attach other state to each value. (Java doesn't have this limitation.)
If you could solve your problem with a number, an enum is likely a good fit and more type safe. If you need any more flexibility than the above, then enums are likely not the right answer. Using polymorphic classes, you can:
Statically ensure that all type-specific behavior is handled. For example, if you need all animals to be able to Bark(), making Animal classes with an abstract Bark() method will let the compiler check for you that each subclass implements it. If you use an enum and a big switch, it won't ensure that you've handled every case.
You can add new cases (types of animals in your example). This can be done across source files, and even across package boundaries. With an enum, once you've declared it, it's frozen. Open-ended extension is one of the primary strengths of OOP.
It's important to note that your colleague's example is not in direct opposition to yours. If he wants an animal's type to be an exposed property (which is useful for some things), you can still do that without using an enum, using the type object pattern:
public abstract class AnimalType {
public static AnimalType Unknown { get; private set; }
public static AnimalType Cat { get; private set; }
public static AnimalType Dog { get; private set; }
static AnimalType() {
Unknown = new AnimalType("Unknown");
Cat = new AnimalType("Cat");
Dog = new AnimalType("Dog");
}
}
public class Animal {
public AnimalType Type { get; set; }
}
This gives you the convenience of an enum: you can do AnimalType.Cat and you can get the type of an animal. But it also gives you the flexibility of classes: you can add fields to AnimalType to store additional data with each type, add virtual methods, etc. More importantly, you can define new animal types by just creating new instances of AnimalType.
I'd urge you to reconsider: in an anemic domain model (per the comments above), cats don't behave differently than dogs, so there's no polymorphism. An animal's type really is just an attribute. It's hard to see what inheritance buys you there.
Most importantly OOPS means modeling reality. Inheritance gives you the opportunity to say Cat is an animal. Animal should not know if its a cat now shout it and then decide that it is suppose to Meow and not Bark, Encapsulation gets defeated there. Less code as now you do not have to do If else as you said.
Both solutions are right.
You should look which techniques applies better to you problem.
If your program uses few different objects, and doesn't add new classes, its better to stay with enumerations.
But if you program uses a lot of different objects (different classes), and may add new classes, in the future, better try the inheritance way.