I see, that by using RethinkDB connector one can achieve real time querying capabilites by subscribing into specifically named lists. I assume, that this is not actually the fastest solution, as the query probably updates only after changes to records are written to the database. Is there any recommended approach to achieve realtime querying capabilites deepstream-side?
There are some favourable properties like:
Number of unique queries is small compared to number of records or even number of connected clients
All manipulation of records that are subject to querying is done via RPC.
I can imagine multiple ways how to do that:
Imitate the rethinkdb connector approach. But for that I am missing a list.listen() method. With that I would be able to create a backend process creating a list on-demand and on each RPC CRUD operation on records update all currently active lists=queries.
Reimplement basic list functionality in records and use the above approach with now existing .listen()
Use .listen() in events?
Or do we have list.listen() and I just missed it? Or there is more elegant way how to do it?
Great question - generally lists are a client-side concept, implemented on top of records. Listen notifies you about clients subscribing to records, not necessarily changing them - change notifications arrive via mylist.subscribe(data => {}) or myRecord.subscribe(data => {}).
The tricky bit is the very limited querying capability of caches. Redis has a basic concept of secondary indices that can be searched for ranges and intersection, memcached and co are to my knowledge pure key-value stores, searchable only by ID - as a result the actual querying would make most sense on the database layer where your data will usually arrive in significantly less than 200ms.
The RethinkDB search provider offers support for RethinkDB's built in realtime querying capabilites. Alternatively you could use MongoDB and trail its operations log or use PostGres and deepstream's built in subscribe feature for change notifications.
Related
I have a system where there are large dataset(s) where I want to have quick searches, and elastic search is suitable for it. So the data resides in SQL, and is synced to ES. There is an obvious small delay in this sync.
There are consumers of this data which could work with slightly stale data. So if there's an API for UI which end users use to see the dataset. A delay of 3-4 seconds is acceptable. So API handler which deals with ES is perfect here.
Then there are consumers of this data (bots) who want to work with real time data. So for the almost same requirements, should I create another API just like that in UI consumer, which gets data from SQL?
What is the usual best practice which is followed, and I'm assuming this is a very common usecase.
You probably should stick to creating just a sinlge API and use a query string parameter to decide which of the two data sources to use. This will result in less code to maintain.
I use Redis as my queuing engine, and now there are millions of items in my queue. I need to find an item there, and watch its properties.
If it was SQL Server or any type of RDBMS, I could use SQL language and execute a query against database to find the record. But in Redis queue, I can only push from one side, and pop from the same side, or the other side.
How can I do that?
With the vague nature of the question, we can only give you a vague answer.
You need to create secondary indexes to store find your data. As you already have it figured out that you cannot run SQL like queries therefore you should look at the following link
http://redis.io/topics/indexes
One important point that you should consider is the following (taken from the above link)
Implementing and maintaining indexes with Redis is an advanced topic, so most users that need to perform complex queries on data should understand if they are better served by a relational store. However often, especially in caching scenarios, there is the explicit need to store indexed data into Redis in order to speedup common queries which require some form of indexing in order to be executed.
I'm creating a mobile app and it requires a API service backend to get/put information for each user. I'll be developing the web service on ServiceStack, but was wondering about the storage. I love the idea of a fast in-memory caching system like Redis, but I have a few questions:
I created a sample schema of what my data store should look like. Does this seems like it's a good case for using Redis as opposed to a MySQL DB or something like that?
schema http://www.miles3.com/uploads/redis.png
How difficult is the setup for persisting the Redis store to disk or is it kind of built-in when you do writes to the store? (I'm a newbie on this NoSQL stuff)
I currently have my setup on AWS using a Linux micro instance (because it's free for a year). I know many factors go into this answer, but in general will this be enough for my web service and Redis? Since Redis is in-memory will that be enough? I guess if my mobile app skyrockets (hey, we can dream right?) then I'll start hitting the ceiling of the instance.
What to think about when desigining a NoSQL Redis application
1) To develop correctly in Redis you should be thinking more about how you would structure the relationships in your C# program i.e. with the C# collection classes rather than a Relational Model meant for an RDBMS. The better mindset would be to think more about data storage like a Document database rather than RDBMS tables. Essentially everything gets blobbed in Redis via a key (index) so you just need to work out what your primary entities are (i.e. aggregate roots)
which would get kept in its own 'key namespace' or whether it's non-primary entity, i.e. simply metadata which should just get persisted with its parent entity.
Examples of Redis as a primary Data Store
Here is a good article that walks through creating a simple blogging application using Redis:
http://www.servicestack.net/docs/redis-client/designing-nosql-database
You can also look at the source code of RedisStackOverflow for another real world example using Redis.
Basically you would need to store and fetch the items of each type separately.
var redisUsers = redis.As<User>();
var user = redisUsers.GetById(1);
var userIsWatching = redisUsers.GetRelatedEntities<Watching>(user.Id);
The way you store relationship between entities is making use of Redis's Sets, e.g: you can store the Users/Watchers relationship conceptually with:
SET["ids:User>Watcher:{UserId}"] = [{watcherId1},{watcherId2},...]
Redis is schema-less and idempotent
Storing ids into redis sets is idempotent i.e. you can add watcherId1 to the same set multiple times and it will only ever have one occurrence of it. This is nice because it means you don't ever need to check the existence of the relationship and can freely keep adding related ids like they've never existed.
Related: writing or reading to a Redis collection (e.g. List) that does not exist is the same as writing to an empty collection, i.e. A list gets created on-the-fly when you add an item to a list whilst accessing a non-existent list will simply return 0 results. This is a friction-free and productivity win since you don't have to define your schemas up front in order to use them. Although should you need to Redis provides the EXISTS operation to determine whether a key exists or a TYPE operation so you can determine its type.
Create your relationships/indexes on your writes
One thing to remember is because there are no implicit indexes in Redis, you will generally need to setup your indexes/relationships needed for reading yourself during your writes. Basically you need to think about all your query requirements up front and ensure you set up the necessary relationships at write time. The above RedisStackOverflow source code is a good example that shows this.
Note: the ServiceStack.Redis C# provider assumes you have a unique field called Id that is its primary key. You can configure it to use a different field with the ModelConfig.Id() config mapping.
Redis Persistance
2) Redis supports 2 types persistence modes out-of-the-box RDB and Append Only File (AOF). RDB writes routine snapshots whilst the Append Only File acts like a transaction journal recording all the changes in-between snapshots - I recommend adding both until your comfortable with what each does and what your application needs. You can read all Redis persistence at http://redis.io/topics/persistence.
Note Redis also supports trivial replication you can read more about at: http://redis.io/topics/replication
Redis loves RAM
3) Since Redis operates predominantly in memory the most important resource is that you have enough RAM to hold your entire dataset in memory + a buffer for when it snapshots to disk. Redis is very efficient so even a small AWS instance will be able to handle a lot of load - what you want to look for is having enough RAM.
Visualizing your data with the Redis Admin UI
Finally if you're using the ServiceStack C# Redis Client I recommend installing the Redis Admin UI which provides a nice visual view of your entities. You can see a live demo of it at:
http://servicestack.net/RedisAdminUI/AjaxClient/
I'm currently evaluating possible solutions to the follwing problem:
A set of data entries must be synchonized between multiple clients, where each client may only view (or even know about the existence of) a subset of the data.
Each client "owns" some of the elements, and the decision who else can read or modify those elements may only be made by the owner. To complicate this situation even more, each element (and each element revision) must have an unique identifier that is equal for all clients.
While the latter sounds like a perfect task for CouchDB (and a document based data model would fit my needs perfectly), I'm not sure if the authentication/authorization subsystem of CouchDB can handle these requirements: While it should be possible to restict write access using validation functions, there doesn't seem to be a way to authorize read access. All solutions I've found for this problem propose to route all CouchDB requests through a proxy (or an application layer) that handles authorization.
So, the question is: Is it possible to implement an authorization layer that filters requests to the database so that access is granted only to documents that the requesting client has read access to and still use the replication mechanism of CouchDB? Simplified, this would be some kind of "selective replication" where only some of the documents, and not the whole database is replicated.
I would also be thankful for directions to some detailed information about how replication works. The CouchDB wiki and even the "Definite Guide" Book are not too specific about that.
this begs for replication filters. you filter outbound replication based on whatever criteria you impose, and give the owner of the target unrestricted access to their own copy.
i haven't had the opportunity to play with replication filters directly, but the idea would be that each doc would have some information about who has access to it, and the filtering mechanism would then allow outbound replication of only those documents that you have access to. replication from the target back to the master would be unrestricted, allowing for the master to remain a rollup copy, and potentially multicast changes to overlapping sets of data.
What you are after is replication filters. According to Chris Anderson, it is a 0.11 feature.
"The current status is that there is
an API for filtering the _changes
feed. The replicator in 0.10 consumes
the changes feed, so the next step is
getting the replicator to use the
filter API.
There is work in progress on this, so
it should be fully ready to go in
0.11."
See the orginal post
Here is a new link to the some documentation about this:
http://blog.couchbase.com/what%E2%80%99s-new-apache-couchdb-011-%E2%80%94-part-three-new-features-replication
Indeed, as others have said, replication filters are the way to go for this. Here is a link with some information on using them.
One caveat I would add is that at scale replication filters can be extremely slow. More information about this and other nuances about couchdb can be found in this excellent blog post: "what every developer should know about couchdb". For large scale systems performing replication in the application layer has proven faster and more reliable.
We're building a Silverlight application which will be offered as SaaS. The end product is a Silverlight client that connects to a WCF service. As the number of clients is potentially large, updating needs to be easy, preferably so that all instances can be updated in one go.
Not having implemented multi tenancy before, I'm looking for opinions on how to achieve
Easy upgrades
Data security
Scalability
Three different models to consider are listed on msdn
Separate databases. This is not easy to maintain as all schema changes will have to be applied to each customer's database individually. Are there other drawbacks? A pro is data separation and security. This also allows for slight modifications per customer (which might be more hassle than it's worth!)
Shared Database, Separate Schemas. A TenantID column is added to each table. Ensuring that each customer gets the correct data is potentially dangerous. Easy to maintain and scales well (?).
Shared Database, Separate Schemas. Similar to the first model, but each customer has its own set of tables in the database. Hard to restore backups for a single customer. Maintainability otherwise similar to model 1 (?).
Any recommendations on articles on the subject? Has anybody explored something similar with a Silverlight SaaS app? What do I need to consider on the client side?
Depends on the type of application and scale of data. Each one has downfalls.
1a) Separate databases + single instance of WCF/client. Keeping everything in sync will be a challenge. How do you upgrade X number of DB servers at the same time, what if one fails and is now out of sync and not compatible with the client/WCF layer?
1b) "Silos", separate DB/WCF/Client for each customer. You don't have the sync issue but you do have the overhead of managing many different instances of each layer. Also you will have to look at SQL licensing, I can't remember if separate instances of SQL are licensed separately ($$$). Even if you can install as many instances as you want, the overhead of multiple instances will not be trivial after a certain point.
3) Basically same issues as 1a/b except for licensing.
2) Best upgrade/management scenario. You are right that maintaining data isolation is a huge concern (1a technically shares this issue at a higher level). The other issue is if your application is data intensive you have to worry about data scalability. For example if every customer is expected to have tens/hundreds millions rows of data. Then you will start to run into issues and query performance for individual customers due to total customer base volumes. Clients are more forgiving for slowdowns caused by their own data volume. Being told its slow because the other 99 clients data is large is generally a no-go.
Unless you know for a fact you will be dealing with huge data volumes from the start I would probably go with #2 for now, and begin looking at clustering or moving to 1a/b setup if needed in the future.
We also have a SaaS product and we use solution #2 (Shared DB/Shared Schema with TenandId). Some things to consider for Share DB / Same schema for all:
As mention above, high volume of data for one tenant may affect performance of the other tenants if you're not careful; for starters index your tables properly/carefully and never ever do queries that force a table scan. Monitor query performance and at least plan/design to be able to partition your DB later on based some criteria that makes sense for your domain.
Data separation is very very important, you don't want to end up showing a piece of data to some tenant that belongs to other tenant. every query must have a WHERE TenandId = ... in it and you should be able to verify/enforce this during dev.
Extensibility of the schema is something that solutions 1 and 3 may give you, but you can go around it by designing a way to extend the fields that are associated with the documents/tables in your domain that make sense (ie. Metadata for tables as the msdn article mentions)
What about solutions that provide an out of the box architecture like Apprenda's SaaSGrid? They let you make database decisions at deploy and maintenance time and not at design time. It seems they actively transform and manage the data layer, as well as provide an upgrade engine.
I've similar case, but my solution is take both advantage.
Where data and how data being placed is the question from tenant. Being a tenant of course I don't want my data to be shared, I want my data isolated, secure and I can get at anytime I want.
Certain data it possibly share eg: company list. So database should be global and tenant database, just make sure to locked in operation tenant database schema, and procedure to update all tenant database at once.
Anyway SaaS model everything delivered as server / web service, so no matter where the database should come to client as service, then only render by client GUI.
Thanks
Existing answers are good. You should look deeply into the issue of upgrading and managing multiple databases. Without knowing the specific app, it might turn out easier to have multiple databases and not have to pay the extra cost of tracking the TenantID. This might not end up being the right decision, but you should certainly be wary of the dev cost of data sharing.