Why does checking for null slow this query down? - sql

I got this table containing 7,000 records
desc ARADMIN.V_PKGXMLCODE
Name Null Type
--------------------- -------- -------------
REQUEST_ID NOT NULL VARCHAR2(15)
AVAILABILITY VARCHAR2(69)
XML_CODE CLOB
PACKAGENAME_UNIQUE VARCHAR2(50)
CATALOG NUMBER(15)
CHILD VARCHAR2(255)
CLASSIFICATION_SYSTEM NUMBER(15)
E_MAIL VARCHAR2(69)
The query
SELECT COUNT(*) FROM ARADMIN.V_PKGXMLCODE WHERE (CATALOG <> 0 AND CATALOG <> 2) AND (NOT (CHILD IS NULL));
takes less than one second.
The query
SELECT COUNT(*) FROM ARADMIN.V_PKGXMLCODE WHERE (CATALOG IS NULL OR (CATALOG <> 0 AND CATALOG <> 2)) AND (NOT (CHILD IS NULL));
takes 23 seconds.
Explain plan however claims it should go real quick...
What can I do?

The only way I can think to get that kind of difference in execution speed would be to (a) have an index on field4, and (b) have a lot of empty data blocks; possibly from a high water mark set very high by repeated direct-path loads.
The first query would still use the index and perform as expected. But as null values are not indexed, the index cannot be used to check the or field4 is null condition, so it would fall back to a full table scan.
That in itself shouldn't be a problem here, as a full table scan of 7000 rows shouldn't take long. But since it is taking so long, something else is going on. A full table scan has to examine every data block allocated to the table to see if they contain any rows, and the time it's taking suggests there are a lot more blocks than you need to hold 7000 rows, even with inline CLOB storage.
The simplest way to get a lot of empty data blocks is to have a lot of data and then delete most of it. But I believe you said in a now-deleted comment on an earlier question that performance used to be OK and has got worse. That can happen if you do direct-path inserts, particularly if you 'refresh' data by deleting it and then inserting new data in direct-path mode. You could be doing that with inserts that have the /*+ append */ hint; or in parallel; or through SQL*Loader. Each time you did that the high water mark would move, as old empty blocks wouldn't be reused; and each time performance of the query that checks for nulls would degrade a little. After a lot of iterations that would really start to add up.
You can check the data dictionary to see how much space is allocated to your table (user_segments etc.), and compare that to the size of the data you think you actually have. You can reset the HWM by rebuilding the table, e.g by doing:
alter table mytable move;
(preferably in a maintenance window!)
As a demo I ran a cycle to direct-path insert and delete 7000 rows over a hundred times, and then ran both your queries. The first one took 0.06 seconds (much of which is SQL Devleoper overhead); the second took 1.260. (I also ran Gordon's, which got a similar time, as it still has to do a FTS). With more iterations the difference would become even more marked, but I ran out of space... I then did an alter table move and re-ran your second query, which then took 0.05 seconds.

That is interesting. I would expect the query to have the same performance, because Oracle has a good optimizer and shouldn't be confused by the NULL.
How does this version have better performance?
select x1.cnt + x2.cnt + x3.cnt
from (select count(*) as cnt
from MYTABLE
where field4 = 1 and child is not null
) x1 cross join
(select count(*) as cnt
from MYTABLE
where field4 = 4 and child is not null
) x2 cross join
(select count(*) as cnt
from MYTABLE
where field4 is null and child is not null
) x3;
This version should be able to take advantage of an index on MYTABLE(field4, child).

I was actually struggling with a similar issue. I had a condition where I needed to filter out all the NULL values from my query.
I started with:
ColumnName IS NOT NULL
This increased my query time manifolds, I tried multiple things after this, like functions where I would just return what I needed, although that was not working as well. Finally a small change did the trick, what I did was:
IsNull(ColumnName,'') <> ''
And it worked, I am not entirely sure what is the difference, although it worked.

IS NULL does not work with count. You get the error "Incorrect parameter count in the call to native function 'ISNULL'"

Related

Why changing where statement to a variable cause query to be 4 times slower

I am inserting data from one table "Tags" from "Recovery" database into another table "Tags" in "R3" database
they all live in my laptop similar SQL Server instance
I have built the insert query and because Recovery..Tags table is around 180M records I decided to break it into smaller sebsets. ( 1 million recs at the time)
Here is my query (Let's call Query A)
insert into R3..Tags (iID,DT,RepID,Tag,xmiID,iBegin,iEnd,Confidence,Polarity,Uncertainty,Conditional,Generic,HistoryOf,CodingScheme,Code,CUI,TUI,PreferredText,ValueBegin,ValueEnd,Value,Deleted,sKey,RepType)
SELECT T.iID,T.DT,T.RepID,T.Tag,T.xmiID,T.iBegin,T.iEnd,T.Confidence,T.Polarity,T.Uncertainty,T.Conditional,T.Generic,T.HistoryOf,T.CodingScheme,T.Code,T.CUI,T.TUI,T.PreferredText,T.ValueBegin,T.ValueEnd,T.Value,T.Deleted,T.sKey,R.RepType
FROM Recovery..tags T inner join Recovery..Reps R on T.RepID = R.RepID
where T.iID between 13000001 and 14000000
it takes around 2 minutes.
That is ok
To make things a bit easier for me
I put the iiD in the were statement in a variable
so my query looks like this (Let's call Query B)
declare #i int = 12
insert into R3..Tags (iID,DT,RepID,Tag,xmiID,iBegin,iEnd,Confidence,Polarity,Uncertainty,Conditional,Generic,HistoryOf,CodingScheme,Code,CUI,TUI,PreferredText,ValueBegin,ValueEnd,Value,Deleted,sKey,RepType)
SELECT T.iID,T.DT,T.RepID,T.Tag,T.xmiID,T.iBegin,T.iEnd,T.Confidence,T.Polarity,T.Uncertainty,T.Conditional,T.Generic,T.HistoryOf,T.CodingScheme,T.Code,T.CUI,T.TUI,T.PreferredText,T.ValueBegin,T.ValueEnd,T.Value,T.Deleted,T.sKey,R.RepType
FROM Recovery..tags T inner join Recovery..Reps R on T.RepID = R.RepID
where T.iID between (1000000 * #i) + 1 and (#i+1)*1000000
but that cause the insert to become so slow (around 10 min)
So what I tried query A again and gave me around 2 min
I tried query B again and gave around 8 min!!
I am attaching exec plan for each one (at a site that shows an analysis of the query plan) - Query A Plan and Query B Plan
Any idea why this is happening?
and how to fix it?
The big difference in time is due to the very different plans that are being created to join Tags and Reps.
Fundamentally, in version A, it knows how much data is being extracted (a million rows) and it can design an efficient query for that. However, because you are using variables in B to define how much data is being imported, it has to define a more generic query - one that would work for 10 rows, a million rows, or a hundred million rows.
In the plans, here are the relevant sections of the query joining Tags and Reps...
... in A
... and B
Note that in A it takes just over a minute to do the join; in B it takes 6 and a half minutes.
The key thing that appears to take the time is that it does a table scan of the Tags table which takes 5:44 to complete. The plan has this as a table scan, as the next time you run the query you may want many more than 1 million rows.
A secondary issue is that the amount of data it reads (or expects to read) from Reps is also way out of whack. In A it expected to read 2 million rows and read 1421; in B it basically read them all (even though technically it probably only needed the same 1421).
I think you have two main approaches to fix
Look at indexing, to remove the table scan on Tags - ensure the indexes match what is needed and allows the query to do a scan on that index (it appears that the index at the top of #MikePetri's answer is what you need, or similar). This way instead of doing a table scan, it can do an index scan which can start 'in the middle' of the data set (a table scan must start at either the start or end of the data set).
Separate this into two processes. The first process gets the relevant million rows from Tags, and saves it in a temporary table. The second process uses the data in the temporary table to join to Reps (also try using option (recompile) in the second query, so that it checks the temporary table's size before creating the plan).
You can even put an index or two (and/or Primary Key) on that temporary table to make it better for the next step.
The reason the first query is so much faster is it went parallel. This means the cardinality estimator knew enough about the data it had to handle, and the query was large enough to tip the threshold for parallel execution. Then, the engine passed chunks of data for different processors to handle individually, then report back and repartition the streams.
With the value as a variable, it effectively becomes a scalar function evaluation, and a query cannot go parallel with a scalar function, because the value has to determined before the cardinality estimator can figure out what to do with it. Therefore, it runs in a single thread, and is slower.
Some sort of looping mechanism might help. Create the included indexes to assist the engine in handling this request. You can probably find a better looping mechanism, since you are familiar with the identity ranges you care about, but this should get you in the right direction. Adjust for your needs.
With a loop like this, it commits the changes with each loop, so you aren't locking the table indefinitely.
USE Recovery;
GO
CREATE INDEX NCI_iID
ON Tags (iID)
INCLUDE (
DT
,RepID
,tag
,xmiID
,iBegin
,iEnd
,Confidence
,Polarity
,Uncertainty
,Conditional
,Generic
,HistoryOf
,CodingScheme
,Code
,CUI
,TUI
,PreferredText
,ValueBegin
,ValueEnd
,value
,Deleted
,sKey
);
GO
CREATE INDEX NCI_RepID ON Reps (RepID) INCLUDE (RepType);
USE R3;
GO
CREATE INDEX NCI_iID ON Tags (iID);
GO
DECLARE #RowsToProcess BIGINT
,#StepIncrement INT = 1000000;
SELECT #RowsToProcess = (
SELECT COUNT(1)
FROM Recovery..tags AS T
WHERE NOT EXISTS (
SELECT 1
FROM R3..Tags AS rt
WHERE T.iID = rt.iID
)
);
WHILE #RowsToProcess > 0
BEGIN
INSERT INTO R3..Tags
(
iID
,DT
,RepID
,Tag
,xmiID
,iBegin
,iEnd
,Confidence
,Polarity
,Uncertainty
,Conditional
,Generic
,HistoryOf
,CodingScheme
,Code
,CUI
,TUI
,PreferredText
,ValueBegin
,ValueEnd
,Value
,Deleted
,sKey
,RepType
)
SELECT TOP (#StepIncrement)
T.iID
,T.DT
,T.RepID
,T.Tag
,T.xmiID
,T.iBegin
,T.iEnd
,T.Confidence
,T.Polarity
,T.Uncertainty
,T.Conditional
,T.Generic
,T.HistoryOf
,T.CodingScheme
,T.Code
,T.CUI
,T.TUI
,T.PreferredText
,T.ValueBegin
,T.ValueEnd
,T.Value
,T.Deleted
,T.sKey
,R.RepType
FROM Recovery..tags AS T
INNER JOIN Recovery..Reps AS R ON T.RepID = R.RepID
WHERE NOT EXISTS (
SELECT 1
FROM R3..Tags AS rt
WHERE T.iID = rt.iID
)
ORDER BY
T.iID;
SET #RowsToProcess = #RowsToProcess - #StepIncrement;
END;

VACUUM on Redshift (AWS) after DELETE and INSERT

I have a table as below (simplified example, we have over 60 fields):
CREATE TABLE "fact_table" (
"pk_a" bigint NOT NULL ENCODE lzo,
"pk_b" bigint NOT NULL ENCODE delta,
"d_1" bigint NOT NULL ENCODE runlength,
"d_2" bigint NOT NULL ENCODE lzo,
"d_3" character varying(255) NOT NULL ENCODE lzo,
"f_1" bigint NOT NULL ENCODE bytedict,
"f_2" bigint NULL ENCODE delta32k
)
DISTSTYLE KEY
DISTKEY ( d_1 )
SORTKEY ( pk_a, pk_b );
The table is distributed by a high-cardinality dimension.
The table is sorted by a pair of fields that increment in time order.
The table contains over 2 billion rows, and uses ~350GB of disk space, both "per node".
Our hourly house-keeping involves updating some recent records (within the last 0.1% of the table, based on the sort order) and inserting another 100k rows.
Whatever mechanism we choose, VACUUMing the table becomes overly burdensome:
- The sort step takes seconds
- The merge step takes over 6 hours
We can see from SELECT * FROM svv_vacuum_progress; that all 2billion rows are being merged. Even though the first 99.9% are completely unaffected.
Our understanding was that the merge should only affect:
1. Deleted records
2. Inserted records
3. And all the records from (1) or (2) up to the end of the table
We have tried DELETE and INSERT rather than UPDATE and that DML step is now significantly quicker. But the VACUUM still merges all 2billion rows.
DELETE FROM fact_table WHERE pk_a > X;
-- 42 seconds
INSERT INTO fact_table SELECT <blah> FROM <query> WHERE pk_a > X ORDER BY pk_a, pk_b;
-- 90 seconds
VACUUM fact_table;
-- 23645 seconds
In fact, the VACUUM merges all 2 billion records even if we just trim the last 746 rows off the end of the table.
The Question
Does anyone have any advice on how to avoid this immense VACUUM overhead, and only MERGE on the last 0.1% of the table?
How often are you VACUUMing the table? How does the long duration effect you? our load processing continues to run during VACUUM and we've never experienced any performance problems with doing that. Basically it doesn't matter how long it takes because we just keep running BAU.
I've also found that we don't need to VACUUM our big tables very often. Once a week is more than enough. Your use case may be very performance sensitive but we find the query times to be within normal variations until the table is more than, say, 90% unsorted.
If you find that there's a meaningful performance difference, have you considered using recent and history tables (inside a UNION view if needed)? That way you can VACUUM the small "recent" table quickly.
Couldn't fix it in comments section, so posting it as answer
I think right now, if the SORT keys are same across the time series tables and you have a UNION ALL view as time series view and still performance is bad, then you may want to have a time series view structure with explicit filters as
create or replace view schemaname.table_name as
select * from table_20140901 where sort_key_date = '2014-09-01' union all
select * from table_20140902 where sort_key_date = '2014-09-02' union all .......
select * from table_20140925 where sort_key_date = '2014-09-25';
Also make sure to have stats collected on all these tables on sort keys after every load and try running queries against it. It should be able to push down any filter values into the view if you are using any. End of day after load, just run a VACUUM SORT ONLY or full vacuum on the current day's table which should be much faster.
Let me know if you are still facing any issues after the above test.

Query with a UNION sub-query takes a very long time

I've been having an odd problem with some queries that depend on a sub query. They run lightning fast, until I use a UNION statement in the sub query. Then they run endlessly, I've given after 10 minutes. The scenario I'm describing now isn't the original one I started with, but I think it cuts out a lot of possible problems yet yields the same problem. So even though it's a pointless query, bear with me!
I have a table:
tblUser - 100,000 rows
tblFavourites - 200,000 rows
If I execute:
SELECT COUNT(*)
FROM tblFavourites
WHERE userID NOT IN (SELECT uid FROM tblUser);
… then it runs in under a second. However, if I modify it so that the sub query has a UNION, it will run for at least 10 minutes (before I give up!)
SELECT COUNT(*)
FROM tblFavourites
WHERE userID NOT IN (SELECT uid FROM tblUser UNION SELECT uid FROM tblUser);
A pointless change, but it should yield the same result and I don't see why it should take any longer?
Putting the sub-query into a view and calling that instead has the same effect.
Any ideas why this would be? I'm using SQL Azure.
Problem solved. See my answer below.
UNION generate unique values, so the DBMS engine makes sorts.
You can use safely UNION ALL in this case.
UNION is really doing a DISTINCT on all fields in the combined data set. It filters out dupes in the final results.
Is Uid indexed? If not it may take a long time as the query engine:
Generates the first result set
Generates the second result set
Filters out all the dupes (which is half the records) in a hash table
If duplicates aren't a concern (and using IN means they won't be) then use UNION ALL which removes the expensive Sort/Filter step.
UNION's are usually implemented via temporary in-memory tables. You're essentially copying your tblUser two times into memory, WITH NO INDEX. Then every row in tblFavourites incur a complete table scan over 200,000 rows - that's 200Kx200K=40 billion double-row scans (because the query engine must get the uid from both table rows)
If your tblUser has an index on uid (which is definitely true because all tables in SQL Azure must have a clustered index), then each row in tblFavourites incurs a very fast index lookup, resulting in only 200Kxlog(100K) =200Kx17 = 200K row scans, each with 17 b-tree index comparisons (which is much faster than reading the uid from a row on a data page), so it should equate to roughly 200Kx(3-4) or 1 million double-row scans. I believe newer versions of SQL server may also build a temp hash table containing just the uid's, so essentially it gets down to 200K row scans (assuming hash table lookup to be trivial).
You should also generate your query plan to check.
Essentially, the non-UNION query runs around 500,000 times faster if tblUser has an index (should be on SQL Azure).
It turns out the problem was due to one of the indexes ... tblFavourites contained two foreign keys to the primary key (uid) in tblUser:
userId
otherUserId
both columns had the same definition and same indexes, but I discovered that swapping userId for otherUserId in the original query solved the problem.
I ran:
ALTER INDEX ALL ON tblFavourites REBUILD
... and the problem went away. The query now executes almost instantly.
I don't know too much about what goes on behind the scenes in Sql Server/Azure ... but I can only imagine that it was a damaged index or something? I update statistics frequently, but that had no effect.
Thanks!
---- UPDATE
The above was not fully correct. It did fix the problem for around 20 minutes, then it returned. I have been in touch with Microsoft support for several days and it seems the problem is to do with the tempDB. They are working on a solution at their end.
I just ran into this problem. I have about 1million rows to go through and then I realized that some of my IDs were in another table, so I unioned to get the same information in one "NOT EXISTS." I went from the query taking about 7 sec to processing only 5000 rows after a minute or so. This seemed to help. I absolutely hate the solution, but I've tried a multitude of things that all end up w/the same extremely slow execution plan. This one got me what I needed in about 18 sec.
DECLARE #PIDS TABLE ([PID] [INT] PRIMARY KEY)
INSERT INTO #PIDS SELECT DISTINCT [ID] FROM [STAGE_TABLE] WITH(NOLOCK)
INSERT INTO #PIDS SELECT DISTINCT [OTHERID] FROM [PRODUCTION_TABLE] WITH(NOLOCK)
WHERE NOT EXISTS(SELECT [PID] FROM #PIDS WHERE [PID] = [OTHERID]
SELECT (columns needed)
FROM [ORDER_HEADER] [OH] WITH(NOLOCK)
INNER JOIN #PIDS ON [OH].[SOME_ID] = [PID]
(And yes I tried "WHERE EXISTS IN..." for the final select... inner join was faster)
Please let me say again, I personaly feel this is really ugly, but I actually use this join twice in my proc, so it's going to save me time in the long run. Hope this helps.
Doesn't it make more sense to rephrase the questions from
"UserIds that aren't on the combined list of all the Ids that apper in this table and/or that table"
to
"UserIds that aren't on this table AND aren't on that table either
SELECT COUNT(*)
FROM tblFavourites
WHERE userID NOT IN (SELECT uid FROM tblUser)
AND userID NOT IN (SELECT uid FROM tblUser);

processing large table - how do i select the records page by page?

I need to do a process on all the records in a table. The table could be very big so I rather process the records page by page. I need to remember the records that have already been processed so there are not included in my second SELECT result.
Like this:
For first run,
[SELECT 100 records FROM MyTable]
For second run,
[SELECT another 100 records FROM MyTable]
and so on..
I hope you get the picture. My question is how do I write such select statement?
I'm using oracle btw, but would be nice if I can run on any other db too.
I also don't want to use store procedure.
Thank you very much!
Any solution you come up with to break the table into smaller chunks, will end up taking more time than just processing everything in one go. Unless the table is partitioned and you can process exactly one partition at a time.
If a full table scan takes 1 minute, it will take you 10 minutes to break up the table into 10 pieces. If the table rows are physically ordered by the values of an indexed column that you can use, this will change a bit due to clustering factor. But it will anyway take longer than just processing it in one go.
This all depends on how long it takes to process one row from the table of course. You could chose to reduce the load on the server by processing chunks of data, but from a performance perspective, you cannot beat a full table scan.
You are most likely going to want to take advantage of Oracle's stopkey optimization, so you don't end up with a full tablescan when you don't want one. There are a couple ways to do this. The first way is a little longer to write, but let's Oracle automatically figure out the number of rows involved:
select *
from
(
select rownum rn, v1.*
from (
select *
from table t
where filter_columns = 'where clause'
order by columns_to_order_by
) v1
where rownum <= 200
)
where rn >= 101;
You could also achieve the same thing with the FIRST_ROWS hint:
select /*+ FIRST_ROWS(200) */ *
from (
select rownum rn, t.*
from table t
where filter_columns = 'where clause'
order by columns_to_order_by
) v1
where rn between 101 and 200;
I much prefer the rownum method, so you don't have to keep changing the value in the hint (which would need to represent the end value and not the number of rows actually returned to the page to be accurate). You can set up the start and end values as bind variables that way, so you avoid hard parsing.
For more details, you can check out this post

SQL massive performance difference using SELECT TOP x even when x is much higher than selected rows

I'm selecting some rows from a table valued function but have found an inexplicable massive performance difference by putting SELECT TOP in the query.
SELECT col1, col2, col3 etc
FROM dbo.some_table_function
WHERE col1 = #parameter
--ORDER BY col1
is taking upwards of 5 or 6 mins to complete.
However
SELECT TOP 6000 col1, col2, col3 etc
FROM dbo.some_table_function
WHERE col1 = #parameter
--ORDER BY col1
completes in about 4 or 5 seconds.
This wouldn't surprise me if the returned set of data were huge, but the particular query involved returns ~5000 rows out of 200,000.
So in both cases, the whole of the table is processed, as SQL Server continues to the end in search of 6000 rows which it will never get to. Why the massive difference then? Is this something to do with the way SQL Server allocates space in anticipation of the result set size (the TOP 6000 thereby giving it a low requirement which is more easily allocated in memory)?
Has anyone else witnessed something like this?
Thanks
Table valued functions can have a non-linear execution time.
Let's consider function equivalent for this query:
SELECT (
SELECT SUM(mi.value)
FROM mytable mi
WHERE mi.id <= mo.id
)
FROM mytable mo
ORDER BY
mo.value
This query (that calculates the running SUM) is fast at the beginning and slow at the end, since on each row from mo it should sum all the preceding values which requires rewinding the rowsource.
Time taken to calculate SUM for each row increases as the row numbers increase.
If you make mytable large enough (say, 100,000 rows, as in your example) and run this query you will see that it takes considerable time.
However, if you apply TOP 5000 to this query you will see that it completes much faster than 1/20 of the time required for the full table.
Most probably, something similar happens in your case too.
To say something more definitely, I need to see the function definition.
Update:
SQL Server can push predicates into the function.
For instance, I just created this TVF:
CREATE FUNCTION fn_test()
RETURNS TABLE
AS
RETURN (
SELECT *
FROM master
);
These queries:
SELECT *
FROM fn_test()
WHERE name = #name
SELECT TOP 1000 *
FROM fn_test()
WHERE name = #name
yield different execution plans (the first one uses clustered scan, the second one uses an index seek with a TOP)
I had the same problem, a simple query joining five tables returning 1000 rows took two minutes to complete. When I added "TOP 10000" to it it completed in less than one second. It turned out that the clustered index on one of the tables was heavily fragmented.
After rebuilding the index the query now completes in less than a second.
Your TOP has no ORDER BY, so it's simply the same as SET ROWCOUNT 6000 first. An ORDER BY would require all rows to be evaluated first, and it's would take a lot longer.
If dbo.some_table_function is a inline table valued udf, then it's simply a macro that's expanded so it returns the first 6000 rows as mentioned in no particular order.
If the udf is multi valued, then it's a black box and will always pull in the full dataset before filtering. I don't think this is happening.
Not directly related, but another SO question on TVFs
You may be running into something as simple as caching here - perhaps (for whatever reason) the "TOP" query is cached? Using an index that the other isn't?
In any case the best way to quench your curiosity is to examine the full execution plan for both queries. You can do this right in SQL Management Console and it'll tell you EXACTLY what operations are being completed and how long each is predicted to take.
All SQL implementations are quirky in their own way - SQL Server's no exception. These kind of "whaaaaaa?!" moments are pretty common. ;^)
It's not necessarily true that the whole table is processed if col1 has an index.
The SQL optimization will choose whether or not to use an index. Perhaps your "TOP" is forcing it to use the index.
If you are using the MSSQL Query Analyzer (The name escapes me) hit Ctrl-K. This will show the execution plan for the query instead of executing it. Mousing over the icons will show the IO/CPU usage, I believe.
I bet one is using an index seek, while the other isn't.
If you have a generic client:
SET SHOWPLAN_ALL ON;
GO
select ...;
go
see http://msdn.microsoft.com/en-us/library/ms187735.aspx for details.
I think Quassnois' suggestion seems very plausible. By adding TOP 6000 you are implicitly giving the optimizer a hint that a fairly small subset of the 200,000 rows are going to be returned. The optimizer then uses an index seek instead of an clustered index scan or table scan.
Another possible explanation could caching, as Jim davis suggests. This is fairly easy to rule out by running the queries again. Try running the one with TOP 6000 first.