Use C++/CLI to Split System::String^ with multiple delimiters - c++-cli

I'm new to C++/CLI and am trying to split a System::String^ with multiple delimiters.
System::String^ = 65 kb (65,546 bytes)
Split
System::String^ = 65546
I've found this code that would be great but it only works for std::string and I'm not allowed to convert System::String^.
std::string s = "65 kb (67,873 bytes)";
std::string delimiter = " (";
size_t pos = 0;
std::string token;
while ((pos = s.find(delimiter)) != std::string::npos) {
token = s.substr(0, pos);
std::cout << token << std::endl;
s.erase(0, pos + delimiter.length());
}
Any ideas on how I would do this?

You're using a .NET class (System.String). You need a .NET answer: Does C# have a String Tokenizer like Java's?

Related

Identify the start of token in boost tokenizer

std::string s = "this string will be modified"; boost::tokenizer<> tok(s); for (auto it = tok.begin(), it_end = tok.end(); it != it_end; ++it) { std::string::difference_type const offset = it.base() - s.begin()- it->size(); //do some operations on string s }
I need to find the start of each token and then suppose delete 3 characters from this token. This process will be repeated for the whole string. The offset calculated in this way is not correct if string is modified. Any other way ?
You can use
#include <iostream>
#include <boost/tokenizer.hpp>
int main()
{
typedef boost::tokenizer<> tok_t;
std::string s = "this string will be modified";
tok_t const tok(s);
for (tok_t::const_iterator it = tok.begin(), it_end = tok.end(); it != it_end; ++it)
{
std::string::difference_type const offset = it.base() - s.begin() - it->size();
std::cout << offset << "\t::\t" << *it << '\n';
}
}
See this C++ demo. Output:
0 :: this
5 :: string
12 :: will
17 :: be
20 :: modified

What is the problem with generated SPIR-V code and how to verify it?

I have some generated SPIR-V code which I want to use with the vulkan API. But I get an
Exception thrown at 0x00007FFB68D933CB (nvoglv64.dll) in vulkanCompute.exe: 0xC0000005: Access violation reading location 0x0000000000000008. when trying to create the pipline with vkCreateComputePipelines.
The API calls should be fine, because the same code works with a shader compiled with glslangValidator. Therefore I assume that the generated SPIR-V code must be illformed somehow.
I've checked the SPIR-V code with the validator tool from khronos, using spirv-val --target-env vulkan1.1 mainV.spv which exited without error. Anyhow it is also known that this tool is still incomplete.
I've also tried to use the Radeon GPU Analyzer to compile my SPIR-V code, which is also available online at the shader playground and this tool throws the error Error: Error: internal error: Bil::BilInstructionConvert::Create(60) Code Not Tested! which is not really helpful, but encourages the assumption that the code is malformed.
The SPIR-V code is unfortunately to long to post it here, but it is in the link of the shader playground.
Does anyone know what the problem is with my setting or has any idea how I can verify my SPIR-V code in a better way, without checking all 700 lines of code manually.
I don't thinkt the problem is there, but anyway here is the c++ host code:
#include "vulkan/vulkan.hpp"
#include <iostream>
#include <fstream>
#include <vector>
#define BAIL_ON_BAD_RESULT(result) \
if (VK_SUCCESS != (result)) \
{ \
fprintf(stderr, "Failure at %u %s\n", __LINE__, __FILE__); \
exit(-1); \
}
VkResult vkGetBestComputeQueueNPH(vk::PhysicalDevice &physicalDevice, uint32_t &queueFamilyIndex)
{
auto properties = physicalDevice.getQueueFamilyProperties();
int i = 0;
for (auto prop : properties)
{
vk::QueueFlags maskedFlags = (~(vk::QueueFlagBits::eTransfer | vk::QueueFlagBits::eSparseBinding) & prop.queueFlags);
if (!(vk::QueueFlagBits::eGraphics & maskedFlags) && (vk::QueueFlagBits::eCompute & maskedFlags))
{
queueFamilyIndex = i;
return VK_SUCCESS;
}
i++;
}
i = 0;
for (auto prop : properties)
{
vk::QueueFlags maskedFlags = (~(vk::QueueFlagBits::eTransfer | vk::QueueFlagBits::eSparseBinding) & prop.queueFlags);
if (vk::QueueFlagBits::eCompute & maskedFlags)
{
queueFamilyIndex = i;
return VK_SUCCESS;
}
i++;
}
return VK_ERROR_INITIALIZATION_FAILED;
}
int main(int argc, const char *const argv[])
{
(void)argc;
(void)argv;
try
{
// initialize the vk::ApplicationInfo structure
vk::ApplicationInfo applicationInfo("VecAdd", 1, "Vulkan.hpp", 1, VK_API_VERSION_1_1);
// initialize the vk::InstanceCreateInfo
std::vector<char *> layers = {
"VK_LAYER_LUNARG_api_dump",
"VK_LAYER_KHRONOS_validation"
};
vk::InstanceCreateInfo instanceCreateInfo({}, &applicationInfo, static_cast<uint32_t>(layers.size()), layers.data());
// create a UniqueInstance
vk::UniqueInstance instance = vk::createInstanceUnique(instanceCreateInfo);
auto physicalDevices = instance->enumeratePhysicalDevices();
for (auto &physicalDevice : physicalDevices)
{
auto props = physicalDevice.getProperties();
// get the QueueFamilyProperties of the first PhysicalDevice
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
uint32_t computeQueueFamilyIndex = 0;
// get the best index into queueFamiliyProperties which supports compute and stuff
BAIL_ON_BAD_RESULT(vkGetBestComputeQueueNPH(physicalDevice, computeQueueFamilyIndex));
std::vector<char *>extensions = {"VK_EXT_external_memory_host", "VK_KHR_shader_float16_int8"};
// create a UniqueDevice
float queuePriority = 0.0f;
vk::DeviceQueueCreateInfo deviceQueueCreateInfo(vk::DeviceQueueCreateFlags(), static_cast<uint32_t>(computeQueueFamilyIndex), 1, &queuePriority);
vk::StructureChain<vk::DeviceCreateInfo, vk::PhysicalDeviceFeatures2, vk::PhysicalDeviceShaderFloat16Int8Features> createDeviceInfo = {
vk::DeviceCreateInfo(vk::DeviceCreateFlags(), 1, &deviceQueueCreateInfo, 0, nullptr, static_cast<uint32_t>(extensions.size()), extensions.data()),
vk::PhysicalDeviceFeatures2(),
vk::PhysicalDeviceShaderFloat16Int8Features()
};
createDeviceInfo.get<vk::PhysicalDeviceFeatures2>().features.setShaderInt64(true);
createDeviceInfo.get<vk::PhysicalDeviceShaderFloat16Int8Features>().setShaderInt8(true);
vk::UniqueDevice device = physicalDevice.createDeviceUnique(createDeviceInfo.get<vk::DeviceCreateInfo>());
auto memoryProperties2 = physicalDevice.getMemoryProperties2();
vk::PhysicalDeviceMemoryProperties const &memoryProperties = memoryProperties2.memoryProperties;
const int32_t bufferLength = 16384;
const uint32_t bufferSize = sizeof(int32_t) * bufferLength;
// we are going to need two buffers from this one memory
const vk::DeviceSize memorySize = bufferSize * 3;
// set memoryTypeIndex to an invalid entry in the properties.memoryTypes array
uint32_t memoryTypeIndex = VK_MAX_MEMORY_TYPES;
for (uint32_t k = 0; k < memoryProperties.memoryTypeCount; k++)
{
if ((vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent) & memoryProperties.memoryTypes[k].propertyFlags &&
(memorySize < memoryProperties.memoryHeaps[memoryProperties.memoryTypes[k].heapIndex].size))
{
memoryTypeIndex = k;
std::cout << "found memory " << memoryTypeIndex + 1 << " out of " << memoryProperties.memoryTypeCount << std::endl;
break;
}
}
BAIL_ON_BAD_RESULT(memoryTypeIndex == VK_MAX_MEMORY_TYPES ? VK_ERROR_OUT_OF_HOST_MEMORY : VK_SUCCESS);
auto memory = device->allocateMemoryUnique(vk::MemoryAllocateInfo(memorySize, memoryTypeIndex));
auto in_buffer = device->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(), bufferSize, vk::BufferUsageFlagBits::eStorageBuffer, vk::SharingMode::eExclusive));
device->bindBufferMemory(in_buffer.get(), memory.get(), 0);
// create a DescriptorSetLayout
std::vector<vk::DescriptorSetLayoutBinding> descriptorSetLayoutBinding{
{0, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute}};
vk::UniqueDescriptorSetLayout descriptorSetLayout = device->createDescriptorSetLayoutUnique(vk::DescriptorSetLayoutCreateInfo(vk::DescriptorSetLayoutCreateFlags(), static_cast<uint32_t>(descriptorSetLayoutBinding.size()), descriptorSetLayoutBinding.data()));
std::cout << "Memory bound" << std::endl;
std::ifstream myfile;
myfile.open("shaders/MainV.spv", std::ios::ate | std::ios::binary);
if (!myfile.is_open())
{
std::cout << "File not found" << std::endl;
return EXIT_FAILURE;
}
auto size = myfile.tellg();
std::vector<unsigned int> shader_spv(size / sizeof(unsigned int));
myfile.seekg(0);
myfile.read(reinterpret_cast<char *>(shader_spv.data()), size);
myfile.close();
std::cout << "Shader size: " << shader_spv.size() << std::endl;
auto shaderModule = device->createShaderModuleUnique(vk::ShaderModuleCreateInfo(vk::ShaderModuleCreateFlags(), shader_spv.size() * sizeof(unsigned int), shader_spv.data()));
// create a PipelineLayout using that DescriptorSetLayout
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), 1, &descriptorSetLayout.get()));
vk::ComputePipelineCreateInfo computePipelineInfo(
vk::PipelineCreateFlags(),
vk::PipelineShaderStageCreateInfo(
vk::PipelineShaderStageCreateFlags(),
vk::ShaderStageFlagBits::eCompute,
shaderModule.get(),
"_ZTSZZ4mainENK3$_0clERN2cl4sycl7handlerEE6VecAdd"),
pipelineLayout.get());
auto pipeline = device->createComputePipelineUnique(nullptr, computePipelineInfo);
auto descriptorPoolSize = vk::DescriptorPoolSize(vk::DescriptorType::eStorageBuffer, 2);
auto descriptorPool = device->createDescriptorPool(vk::DescriptorPoolCreateInfo(vk::DescriptorPoolCreateFlags(), 1, 1, &descriptorPoolSize));
auto commandPool = device->createCommandPoolUnique(vk::CommandPoolCreateInfo(vk::CommandPoolCreateFlags(), computeQueueFamilyIndex));
auto commandBuffer = std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::ePrimary, 1)).front());
commandBuffer->begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlags(vk::CommandBufferUsageFlagBits::eOneTimeSubmit)));
commandBuffer->bindPipeline(vk::PipelineBindPoint::eCompute, pipeline.get());
commandBuffer->dispatch(bufferSize / sizeof(int32_t), 1, 1);
commandBuffer->end();
auto queue = device->getQueue(computeQueueFamilyIndex, 0);
vk::SubmitInfo submitInfo(0, nullptr, nullptr, 1, &commandBuffer.get(), 0, nullptr);
queue.submit(1, &submitInfo, vk::Fence());
queue.waitIdle();
printf("all done\nWoohooo!!!\n\n");
}
}
catch (vk::SystemError &err)
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit(-1);
}
catch (std::runtime_error &err)
{
std::cout << "std::runtime_error: " << err.what() << std::endl;
exit(-1);
}
catch (...)
{
std::cout << "unknown error\n";
exit(-1);
}
return EXIT_SUCCESS;
}
Well after checking out line per line it showed that the problem is when working with pointers of pointers. For me it is still not clear from the specification that it is not allowed, but it is understandable that it does not work with logical pointers.
Still the behaviour is strange that the validator is not able to note that and that compiling the SPIRV code crashes instead of throwing a clear error message.
So in the end, it was the Shader code which was wrong.

Constructing bitmask ? bitwise packet

I have been wanting to experiment with this project Axon with an iOS app connecting over a tcp connection. Towards the end of the doc the protocol is explained as so
The wire protocol is simple and very much zeromq-like, where is a BE 24 bit unsigned integer representing a maximum length of roughly ~16mb. The data byte is currently only used to store the codec, for example "json" is simply 1, in turn JSON messages received on the client end will then be automatically decoded for you by selecting this same codec.
With the diagram
octet: 0 1 2 3 <length>
+------+------+------+------+------------------...
| meta | <length> | data ...
+------+------+------+------+------------------...
I have had experience working with binary protocols creating a packet such as:
NSUInteger INT_32_LENGTH = sizeof(uint32_t);
uint32_t length = [data length]; // data is an NSData object
NSMutableData *packetData = [NSMutableData dataWithCapacity:length + (INT_32_LENGTH * 2)];
[packetData appendBytes:&requestType length:INT_32_LENGTH];
[packetData appendBytes:&length length:INT_32_LENGTH];
[packetData appendData:data];
So my question is how would you create the data packet for the Axon request, I would assume some bit shifting, which I am not too clued up on.
Allocate 1 array of char or unsigned char with size == packet_size;
Decalre constants:
const int metaFieldPos = 0;
const int sizeofMetaField = sizeof(char);
const int lengthPos = metaFieldPos + sizeofMetaField;
const int sizeofLengthField = sizeof(char) * 3;
const int dataPos = lengthPos + sizeofLengthField;
If you got the data and can recognize begining of the packet, you can use constants above to
navigate by pointers.
May be these functions will help you (They use Qt, but you can easily translate them to library, that you use)
quint32 Convert::uint32_to_uint24(const quint32 value){
return value & (quint32)(0x00FFFFFFu);
}
qint32 Convert::int32_to_uint24(const qint32 value){
return value & (qint32)(0x00FFFFFF);
}
quint32 Convert::bytes_to_uint24(const char* from){
quint32 result = 0;
quint8 shift = 0;
for (int i = 0; i < bytesIn24Bits; i++) {
result |= static_cast<quint32>(*reinterpret_cast<const quint8 *>(from + i)) << shift;
shift+=bitsInByte;
}
return result;
}
void Convert::uint32_to_uint24Bytes(const quint32 value, char* from){
quint8 shift = 0;
for (int i = 0; i < bytesIn24Bits; i++) {
const quint32 buf = (value >> shift) & 0xFFu;
*(from + i) = *reinterpret_cast<const char *>(&buf);
shift+=bitsInByte;
}
}
QByteArray Convert::uint32_to_uint24QByteArray (const quint32 value){
QByteArray bytes;
bytes.resize(sizeof(value));
*reinterpret_cast<quint32 *>(bytes.data()) = value;
bytes.chop(1);
return bytes;
}

printing lines from files

I'm trying to print the first line from each file but I think its outputting the address instead.
#include <fstream>
#include <iostream>
#include <cstdlib>
using namespace std;
void FirstLineFromFile(ifstream files[], size_t count)
{
const int BUFSIZE = 511;
char buf[BUFSIZE];
ifstream *end, *start;
for (start = files, end = files + count; start < end; start++)
{
cout << start->getline(buf, sizeof(buf)) << '\n';
}
}
streams should not be passed by value. This code passes an array of streams by value. You can try to pass a vector instead and interate over them.
void FirstLineFromFile(vector<ifstream*> files) {
for (int i=0; i<files.size(); ++i) {
string s;
getline(*files[i], s);
cout << s << endl;
}
}
ifstream->getline does not return a string as its return value. You need to print out the buffer that it has filled in a separate line.
for (start = files, end = files + count; start < end; start++)
{
start->getline(buf, sizeof(buf));
cout << buf << '\n';
}

Issue Parsing File with YAML-CPP

In the following code, I'm having some sort of issue getting my .yaml file parsed using parser.GetNextDocument(doc);. After much gross debugging, I've found that the (main) issue here is that my for loop is not running, due to doc.size() == 0; What am I doing wrong?
void
BookView::load()
{
aBook.clear();
QString fileName =
QFileDialog::getOpenFileName(this, tr("Load Address Book"),
"", tr("Address Book (*.yaml);;All Files (*)"));
if(fileName.isEmpty())
{
return;
}
else
{
try
{
std::ifstream fin(fileName.toStdString().c_str());
YAML::Parser parser(fin);
YAML::Node doc;
std::map< std::string, std::string > entry;
parser.GetNextDocument(doc);
std::cout << doc.size();
for( YAML::Iterator it = doc.begin(); it != doc.end(); it++ )
{
*it >> entry;
aBook.push_back(entry);
}
}
catch(YAML::ParserException &e)
{
std::cout << "YAML Exception caught: "
<< e.what()
<< std::endl;
}
}
updateLayout( Navigating );
}
The .yaml file being read was generated using yaml-cpp, so I assume it is correctly formed YAML, but just in case, here's the file anyways.
^#^#^#\230---
-
address: ******************
comment: None.
email: andrew(dot)levenson(at)gmail(dot)com
name: Andrew Levenson
phone: **********^#
Edit: By request, the emitting code:
void
BookView::save()
{
QString fileName =
QFileDialog::getSaveFileName(this, tr("Save Address Book"), "",
tr("Address Book (*.yaml);;All Files (*)"));
if (fileName.isEmpty())
{
return;
}
else
{
QFile file(fileName);
if(!file.open(QIODevice::WriteOnly))
{
QMessageBox::information(this, tr("Unable to open file"),
file.errorString());
return;
}
std::vector< std::map< std::string, std::string > >::iterator itr;
std::map< std::string, std::string >::iterator mItr;
YAML::Emitter yaml;
yaml << YAML::BeginSeq;
for( itr = aBook.begin(); itr < aBook.end(); itr++ )
{
yaml << YAML::BeginMap;
for( mItr = (*itr).begin(); mItr != (*itr).end(); mItr++ )
{
yaml << YAML::Key << (*mItr).first << YAML::Value << (*mItr).second;
}
yaml << YAML::EndMap;
}
yaml << YAML::EndSeq;
QDataStream out(&file);
out.setVersion(QDataStream::Qt_4_5);
out << yaml.c_str();
}
}
Along the lines of what you thought, the problem is that you're writing using QDataStream but reading using plain std::ifstream. You need to do either one or the other.
If you want to use the QDataStream, you'll need to read it in as well. Check out the doc for more detail, but it looks like you can just grab the YAML string:
QDataStream in(&file);
QString str;
in >> str;
and then pass it to yaml-cpp:
std::stringstream stream; // remember to include <sstream>
stream << str; // or str.toStdString() - I'm not sure about how QString works
YAML::Parser parser(stream);
// etc.
The point of a std::stringstream is to transform your string containing YAML into a stream that the YAML parser can read.