Can a physical load balancer offer failover as well? - load-balancing

Can a physical load balancer offer failover as well? My worry is what if the load balancer itself fails? How to provide redundancy in such cases??

yes, most load balancers offer high availability in active/standby, some offer active/active, or active clusters. For physical devices in proximity, hardware failover is an option, but for virtual load balancers and physical load balancers too far apart will use network heartbeats.

Related

Is load balancing with sticky sessions limited to a single load balancing server?

If you make a setup with multiple load balancers, can it still support sticky sessions (e.g. cookie based)?
Since sticky sessions rely on state stored at the load balancer, the different load balancers would have to exchange that information. So technically I believe it is feasible.
Are there any free/paying solutions which can be deployed on prem that provide this feature?
I guess load balancers of AWS, Azure, etc implement such a feature?

What is the conceptual difference between Service Discovery tools and Load Balancers that check node health?

Recently several service discovery tools have become popular/"mainstream", and I’m wondering under what primary use cases one should employ them instead of traditional load balancers.
With LBs, you cluster a bunch of nodes behind the balancer, and then clients make requests to the balancer, who then (typically) round robins those requests to all the nodes in the cluster.
With service discovery (Consul, ZK, etc.), you let a centralized “consensus” service determine what nodes for particular service are healthy, and your app connects to the nodes that the service deems as being healthy. So while service discovery and load balancing are two separate concepts, service discovery gives you load balancing as a convenient side effect.
But, if the load balancer (say HAProxy or nginx) has monitoring and health checks built into it, then you pretty much get service discovery as a side effect of load balancing! Meaning, if my LB knows not to forward a request to an unhealthy node in its cluster, then that’s functionally equivalent to a consensus server telling my app not to connect to an unhealty node.
So to me, service discovery tools feel like the “6-in-one,half-dozen-in-the-other” equivalent to load balancers. Am I missing something here? If someone had an application architecture entirely predicated on load balanced microservices, what is the benefit (or not) to switching over to a service discovery-based model?
Load balancers typically need the endpoints of the resources it balances the traffic load. With the growth of microservices and container based applications, runtime created dynamic containers (docker containers) are ephemeral and doesnt have static end points. These container endpoints are ephemeral and they change as they are evicted and created for scaling or other reasons. Service discovery tools like Consul are used to store the endpoints info of dynamically created containers (docker containers). Tools like consul-registrator running on container hosts registers container end points in service discovery tools like consul. Tools like Consul-template will listen for changes to containers end points in consul and update the load balancer (nginx) for sending the traffic to. Thus both Service Discovery Tools like Consul and Load Balancing tools like Nginx co-exist to provide runtime service discovery and load balancing capability respectively.
Follow up: what are the benefits of ephemeral nodes (ones that come and go, live and die) vs. "permanent" nodes like traditional VMs?
[DDG]: Things that come quickly to my mind: Ephemeral nodes like docker containers are suited for stateless services like APIs etc. (There is traction for persistent containers using external volumes - volume drivers etc)
Speed: Spinning up or destroying ephemeral containers (docker containers from image) takes less than 500 milliseconds as opposed to minutes in standing up traditional VMs
Elastic Infrastructure: In the age of cloud we want to scale out and in according to users demand which implies there will be be containers of ephemeral in nature (cant hold on to IPs etc). Think of a markerting campaign for a week for which we expect 200% increase in traffic TPS, quickly scale with containers and then post campaign, destroy it.
Resource Utilization: Data Center or Cloud is now one big computer (compute cluster) and containers pack the compute cluster for max resource utilization and during weak demand destroy the infrastructure for lower bill/resource usage.
Much of this is possible because of lose coupling with ephemeral containers and runtime discovery using service discovery tool like consul. Traditional VMs and tight binding of IPs can stifle this capability.
Note that the two are not necessarily mutually exclusive. It is possible, for example, that you might still direct clients to a load balancer (which might perform other roles such as throttling) but have the load balancer use a service registry to locate instances.
Also worth pointing out that service discovery enables client-side load balancing i.e. the client can invoke the service directly without the extra hop through the load balancer. My understanding is that this was one of the reasons that Netflix developed Eureka, to avoid inter-service calls having to go out and back through the external ELB for which they would have had to pay. Client-side load balancing also provides a means for the client to influence the load-balancing decision based on its own perspective of service availability.
If you look at the tools from a completely different perspective, namely ITSM/ITIL, load balancing becomes "just that", whereas service discovery is a part of keeping your CMDB up to date, and ajour with all your services, and their interconnectivity, for better visibility of impact, in case of downtime, and an overview of areas that may need supplementing, in case of High availability applications.
Furthermore, service-discovery only gives you a picture as of the last scan, and not near-real-time (of course dependent on which scanning interval you have set), whereas load balancing will keep an up-to-date picture of your application's health.

Bluemix Load Balancer Algorithm

What algorithm is used to balance HTTP load among several instances running on Bluemix? It seems I can use auto-scaling service to scale horizontally, and want to know what algorithm is used when balancing the load.
Cloud Foundry uses round-robin load balancing to distribute requests across the running instances of your app.

Hardware Load-Balancer for JBoss

In what scenario does it make sense to put a hardware load-balancer in front of the apache servers that are running mod_cluster? Logically it seems like mod_cluster is doing all the load balancing. Is mod_cluster required if you're doing Jboss clustering?
Example Architecture
(1) website www.foo.bar being served from:
(4) Apache Servers Running mod_cluster
(2) JBoss App Servers - 1 Cluster
Benefits of a load balancer:
If one server goes down, some use heartbeats and then do not send traffic to dead servers
Downsides of clustering:
In clustering, if a component breaks down, it kills every server.
Benefits of a cluster:
More power to serve webpages
All on one disk
Downsides of a load balancer:
Costly hardware (or free software)
If the load balancer dies, everything dies.
Feel free to add to this answer.

Glassfish failover without load balancer

I have a Glassfish v2u2 cluster with two instances and I want to to fail-over between them. Every document that I read on this subject says that I should use a load balancer in front of Glassfish, like Apache httpd. In this scenario failover works, but I again have a single point of failure.
Is Glassfish able to do that fail-over without a load balancer in front?
The we solved this is that we have two IP addresses which both respond to the URL. The DNS provider (DNS Made Easy) will round robin between the two. Setting the timeout low will ensure that if one server fails the other will answer. When one server stops responding, DNS Made Easy will only send the other host as the server to respond to this URL. You will have to trust the DNS provider, but you can buy service with extremely high availability of the DNS lookup
As for high availability, you can have cluster setup which allows for session replication so that the user won't loose more than potentially one request which fails.
Hmm.. JBoss can do failover without a load balancer according to the docs (http://docs.jboss.org/jbossas/jboss4guide/r4/html/cluster.chapt.html) Chapter 16.1.2.1. Client-side interceptor.
As far as I know glassfish the cluster provides in-memory session replication between nodes. If I use Suns Glassfish Enterprise Application Server I can use HADB which promisses 99.999% of availability.
No, you can't do it at the application level.
Your options are:
Round-robin DNS - expose both your servers to the internet and let the client do the load-balancing - this is quite attractive as it will definitely enable fail-over.
Use a different layer 3 load balancing system - such as "Windows network load balancing" , "Linux Network Load balancing" or the one I wrote called "Fluffy Linux cluster"
Use a separate load-balancer that has a failover hot spare
In any of these cases you still need to ensure that your database and session data etc, are available and in sync between the members of your cluster, which in practice is much harder.