Why are compound assignment operators missing for kernel object? - cgal

With CGAL kernel objects, I can do Vector + Vector, but not Vector += Vector. Same for Point + Vector, but not Point += Vector, etc. Is there any good reason for that, or are they just missing ?
The CGAL kernel and some algorithms require the compound operators on number types, so it looks a little inconsistent and asymmetric.

Related

Matrix multiplication function?

How do you write a matrix multiplication function? Takes two matrices outputs one.
The documentation on assemblyscript.org is pretty short, Float64Array though is a valid type among these but that's 1D so...
AssemblyScript's stdlib is modeled after JavaScript's stdlib, so there are no matrix operations. However, here is a library that might work for you: https://github.com/JustinParratt/big-mult

Coefficients of 2D Chebyshev series in numpy.polynomial.chebyshev

I understand that chebvander2d and chebval2d return the Vandermonde matrix and fitted values for 2D inputs, and chebfit returns the coefficients for 1D-input series, but how do I get the coefficients for 2D-input series?
Short answer: It looks to me like this is not yet implemented. The whole of 2D polynomials seems more like a draft with some stub functions (as of June 2020).
Long answer (I came looking for the same thing, so I dug a little deeper):
First of all, this applies to all of the polynomial classes, not only chebyshev, so you also cannot fit an "ordinary" polynomial (power series). In fact, you cannot even construct one.
To understand the programming problem, let me recapture what a 2D polynomial looks like as a math formula, at an example polynomial of degree 2:
p(x, y) = c_00 + c_10 x + c_01 y + c_20 x^2 + c11 xy + c02 y^2
here the indices of c refer to the powers of x and y (the sum of the exponents must be <= degree).
First thing to notice is that, for degree d, there are (d+1)(d+2)/2 coefficients.
They could be stored in the upper left part of a matrix or in a 1D array, e.g. aranged as in the formula above.
The documentation of functions like numpy.polynomial.polynomial.polyval2d implies that numpy expects the matrix variant: p(x, y) = sum_i,j c_i,j * x^i * y^j.
Side note: it may be confusing that the row index i ("y-coordinate") of the matrix is used as exponent of x, not y; maybe the role of i and j should be switched if this is eventually implementd, or at least there should be a note in the documentation.
This leads to the core problem: the data structure for the 2D coefficients is not defined anywhere; only indirectly, like above, it can be guessed that a matrix should be used. But compared to a 1D array this is a waste of space, and evaluation of the polynomial takes two nested loops instead of just one. Also: does the matrix have to be initialized with np.zeros or do the implemented functions make sure that the lower right part is never touched so that np.empty can be used?
If the whole (d+1)^2 matrix were used, as the polyval2d function doc suggests, the degree of the polynomial would actually be d*2 (if c_d,d != 0)
To test this, I wanted to construct a numpy.polynomial.polynomial.Polynomial (yes, three times polynomial) and check the degree attribute:
import numpy as np
import numpy.polynomial.polynomial as poly
coef = np.array([
[5.00, 5.01, 5.02],
[5.10, 5.11, 0. ],
[5.20, 0. , 0. ]
])
polyObj = poly.Polynomial(coef)
print(polyObj.degree)
This gave a ValueError: Coefficient array is not 1-d before the print statement was reached. So while polyval2d expects a 2D coefficient array, it is not (yet) possible to construct such a polynomial - not manually like this at least. With this insight, it is not surprising that there is no function (yet) that computes a fit for 2D polynomials.

Implementation of Isotropic squared exponential kernel with numpy

I've come across a from scratch implementation for gaussian processes:
http://krasserm.github.io/2018/03/19/gaussian-processes/
There, the isotropic squared exponential kernel is implemented in numpy. It looks like:
The implementation is:
def kernel(X1, X2, l=1.0, sigma_f=1.0):
sqdist = np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T)
return sigma_f**2 * np.exp(-0.5 / l**2 * sqdist)
consistent with the implementation of Nando de Freitas: https://www.cs.ubc.ca/~nando/540-2013/lectures/gp.py
However, I am not quite sure how this implementation matches the provided formula, especially in the sqdist part. In my opinion, it is wrong but it works (and delivers the same results as scipy's cdist with squared euclidean distance). Why do I think it is wrong? If you multiply out the multiplication of the two matrices, you get
which equals to either a scalar or a nxn matrix for a vector x_i, depending on whether you define x_i to be a column vector or not. The implementation however gives back a nx1 vector with the squared values.
I hope that anyone can shed light on this.
I found out: The implementation is correct. I just was not aware of the fuzzy notation (in my opinion) which is sometimes used in ML contexts. What is to be achieved is a distance matrix and each row vectors of matrix A are to be compared with the row vectors of matrix B to infer the covariance matrix, not (as I somehow guessed) the direct distance between two matrices/vectors.

Explaining the different types in Metal and SIMD

When working with Metal, I find there's a bewildering number of types and it's not always clear to me which type I should be using in which context.
In Apple's Metal Shading Language Specification, there's a pretty clear table of which types are supported within a Metal shader file. However, there's plenty of sample code available that seems to use additional types that are part of SIMD. On the macOS (Objective-C) side of things, the Metal types are not available but the SIMD ones are and I'm not sure which ones I'm supposed to be used.
For example:
In the Metal Spec, there's float2 that is described as a "vector" data type representing two floating components.
On the app side, the following all seem to be used or represented in some capacity:
float2, which is typedef ::simd_float2 float2 in vector_types.h
Noted: "In C or Objective-C, this type is available as simd_float2."
vector_float2, which is typedef simd_float2 vector_float2
Noted: "This type is deprecated; you should use simd_float2 or simd::float2 instead"
simd_float2, which is typedef __attribute__((__ext_vector_type__(2))) float simd_float2
::simd_float2 and simd::float2 ?
A similar situation exists for matrix types:
matrix_float4x4, simd_float4x4, ::simd_float4x4 and float4x4,
Could someone please shed some light on why there are so many typedefs with seemingly overlapping functionality? If you were writing a new application today (2018) in Objective-C / Objective-C++, which type should you use to represent two floating values (x/y) and which type for matrix transforms that can be shared between app code and Metal?
The types with vector_ and matrix_ prefixes have been deprecated in favor of those with the simd_ prefix, so the general guidance (using float4 as an example) would be:
In C code, use the simd_float4 type. (You have to include the prefix unless you provide your own typedef, since C doesn't have namespaces.)
Same for Objective-C.
In C++ code, use the simd::float4 type, which you can shorten to float4 by using namespace simd;.
Same for Objective-C++.
In Metal code, use the float4 type, since float4 is a fundamental type in the Metal Shading Language [1].
In Swift code, use the float4 type, since the simd_ types are typealiased to shorter names.
Update: In Swift 5, float4 and related types have been deprecated in favor of SIMD4<Float> and related types.
These types are all fundamentally equivalent, and all have the same size and alignment characteristics so you can use them across languages. That is, in fact, one of the design goals of the simd framework.
I'll leave a discussion of packed types to another day, since you didn't ask.
[1] Metal is an unusual case since it defines float4 in the global namespace, then imports it into the metal namespace, which is also exported as the simd namespace. It additionally aliases float4 as vector_float4. So, you can use any of the above names for this vector type (except simd_float4). Prefer float4.
which type should you use to represent two floating values (x/y)
If you can avoid it, don't use a single SIMD vector to represent a single geometry x,y vector if you're using CPU SIMD.
CPU SIMD works best when you have many of the same thing in each SIMD vector, because they're actually stores in 16-byte or 32-byte vector registers where "vertical" operations between two vectors are cheap (packed add or multiply), but "horizontal" operations can mostly only be done with a shuffle + a vertical operation.
For example a vector of 4 x values and another vector of 4 y values lets you do 4 dot-products or 4 cross-products in parallel with no shuffling, so the overall throughput is significantly more dot-products per clock cycle than if you had a vector of [x1, y1, x2, y2].
See https://stackoverflow.com/tags/sse/info, and especially these slides: SIMD at Insomniac Games (GDC 2015) for more about planning your data layout and program design for doing many similar operations in parallel instead of trying to accelerate single operations.
The one exception to this rule is if you're only adding / subtracting to translate coordinates, because that's still purely a vertical operation even with an array-of-structs. And thus fine for CPU short-vector SIMD based on 16-byte vectors. (e.g. the 2nd element in one vector only interacts with the 2nd element in another vector, so no shuffling is needed.)
GPU SIMD is different, and I think has no problem with interleaved data. I'm not a GPU expert.
(I don't use Objective C or Metal, so I can't help you with the details of their type names, just what the underlying CPU hardware is good at. That's basically the same for x86 SSE/AVX, ARM NEON / AArch64 SIMD, or PowerPC Altivec. Horizontal operations are slower.)

Inverse of n-dimensional numpy.gradient

Does numpy or scipy contain a function which is an inverse of the n-dimensional "gradient" fn?
E.g. if "image" contains a 2D matrix, then i want a function inv_gradient that behaves as follows:
(gx, gy) = numpy.gradient(image)
constant_vector_0 = image[0,:] - inv_gradient(gx, gy)[0,:]
constant_vector_1 = image[:,0] - inv_gradient(gx, gy)[:,0]
image == inv_gradient(gx, gy) + tile(constant_vector_0,(shape(image)[0],1)) + transpose(tile(constant_vector_1,(shape(image)[1],1)))
What you are describing is basically an inverse filter. These exist, but are limited.
One way to understand this is via the convolution theorem, and to think of the gradient as a particular kernel for a convolution, in this case something like (-1, 0, 1) in 1D. The issue then, is that the Fourier Transform (FT) of the kernel will have zeroes, and that when the FTs of the kernel and signal are multiplied, the zeroes in the kernel's FT wipes out any data from the original data in this part of the spectrum (and this gets more problematic when noise is added to the image). Specifically for the gradient, there is 0 power in the f=0 band, and this is what people are referring to in the comments, but other information is lost as well.
Still, though, you can get a lot out of an inverse filter, and maybe what you need. It's fairly case specific.
Here's a very basic and quick description of the issue, and an example (though not for gradients).