How do you prove a function works? - testing

I've recently gotten the testing religion and have started primarily with unit testing. I code unit tests which illustrate that a function works under certain cases, specifically using the exact inputs I'm using. I may do a number of unit tests to exercise the function. Still, I haven't actually proved anything other than the function does what I expect it to do under the scenarios I've tested. There may be other inputs and scenarios I haven't thought of and thinking of edge cases is expensive, particularly on the margins.
This is all not very satisfying to do me. When I start to think of having to come up with tests to satisfy branch and path coverage and then integration testing, the prospective permutations can become a little maddening.
So, my question is, how can one prove (in the same vein of proving a theorem in mathematics) that a function works (and, in a perfect world, compose these 'proofs' into a proof that a system works)?
Is there a certain area of testing that covers an approach where you seek to prove a system works by proving that all of its functions work? Does anybody outside of academia bother with an approach like this? Are there tools and techniques to help?
I realize that my use of the word 'work' is not precise. I guess I mean that a function works when it does what some spec (written or implied) states that it should do and does nothing other than that.
Note, I'm not a mathematician, just a programmer.

In academica, there is a concept similar to induction in mathematics, it's called structural induction. However, it only applies to functional programming languages and methods with no side effects at all. In others, it is very hard, if not impossible, to prove that a method works due to side effects.
In TDD, you try to formulate edge cases which a method has to fulfill to be valid, however, it is possible to miss such a case. Even if a (non-trivial) method fulfills all your tests, there can be a combination of arguments or a sequence of events you simply didn't think of which will break your code. Simply put: That's life. You can possibly predict all outcomes in a non-trivial implementation, but you can assure that the method works for specific edge cases, expect for some cases that are so edgy you will cut yourself upon touching them. (zing, bad pun).

It sounds like you are defining work as a function doing what you want it to do. Or in other words, you want to prove that you typed out the logic correctly.
Well, in this case, at least assuming a near infinite amount of valid input for a function, you can't really prove something is correct, you can only disprove it. So the idea is to create good unit tests that span the various outputs of the function. It doesn't prove something correct, but can be used to prove something is correct enough.

The way to prove that something works, can be done by means of formal proofs. Some techniques are fairly well known, at least in academia. One that comes to mind is "Proof by induction". However, this approach is rather manual, and also fairly error prone to mere mortals, if not simply way too complex.
A different more manageable approach to formal verification is known as "Model Checking". With this approach you express your software in a suitable manner, that allows you to perform certain checks on it (with a tool). One such check could be to check for dead/live-locks in multithreaded applications.
Other kinds of checks you can perform, is to make sure that your application will at all times allow the same kinds of interactions as a simpler model of the same application, thereby bringing down the chances of having made the same mistake in both the model and the real application. A tool for model checking could be Spin, but there are many out there.
It seems that Wikipedia has an article on this subject too: Formal Verification

"It sounds like you are defining work as a function doing what you want it to do"
Usually you'll also want to verify a function doesn't do what you didn't want it to do, the definitions are close but not the same, for example an ADD() function can return the correct answer but also print out some extra debugging garbage.

Related

In TDD, how do you write tests first when the functions to test are undefined?

If you have nothing, you cannot write a test because there is nothing to test. This seems pretty obvious to me but never seems to be addressed by proponents of TDD.
In order to write a test, you have to first decide what the method or function looks like that you're going to test. You have to know what parameters to pass to it and what you expect to get back. That is what comes first, not the test.
Tests can never come first. The thing that comes first is the design which specifies what classes and methods are going to exist.
It's true that in order to write a test, the test writer must form some conception on how the test code can interact with the System Under Test. In that sense, conceptual design 'comes first'.
Test-driven development (TDD), however, is valuable because it's not (only) a quality assurance methodology. It's first and foremost a fast feedback loop.
While you may have an initial design in mind, once you start to write a test, you may discover that this design doesn't work (or is awkward to use). This often happens, and should cause you to immediately adjust course.
The red-green-refactor cycle suggests a model to think of TDD. Each such cycle may be a minute or two.
Thus, you may start with an initial design in mind, but then adjust it (or completely rethink it) every other minute.
never seems to be addressed by proponents of TDD
I disagree. Plenty of introductions to TDD discuss this. Two good books that discuss this (and much more) are Kent Beck's Test-Driven Development by Example and Nat Pryce and Steve Freeman's Growing Object-Oriented Code Guided by Tests.
It's the other way round.
If you write a test that calls a function which does not exist, your test suite fails and you get an error forcing you to define that function, just like writing any other test forces you to write the implementation.
Your tests don't need to run to be good tests. But this kind of test is not meant to stay in your test suite. They are sometimes referred to as "staircase tests": you need to write them to get going but they are only instrumental.
What happens generally is that as soon as this test passes, you make it fail by being more specific. Technically the test you end up with is the same you would have written after the fact and it didn't take more time to write it, but during this process you were able to run the test suite one or more times, so you're spending less time in an invalid state, so to speak.
I would like to add that there is nothing untrue in your question, but your conclusion doesn't follow the premise: it is true that what come first is the specification, but there is nothing inconsistent with formalising this specification in a test before the code is written. the spec, and the tests, force you to write the code. TDD is an incremental way of formalising the spec that ensures the spec always comes first.
To write a test, you have to first decide what the method or function looks like that you're going to test. You have to know what parameters to pass to it and what you expect to get back. THAT is what comes first, NOT the test. Tests can NEVER come first. The thing that comes first is the design which specifies what classes and methods are going to exist.
Not quite right (not entirely wrong either - It's Complicated[tm])
If you look at the first example in Test Driven Development by Example, you'll see that Beck doesn't begin with classes and methods. He doesn't even begin with a test.
The very first thing that he creates is a "to-do" list, where each of the entries in the todo list is a representation of a behavior (my terminology, not his). So we see things like
$5 + 10 CHF = $10 if rate is 2:1
These days, you'd be more likely to see this idea expressed as Hoare triple (Given/When/Then, Arrange/Act/Assert, etc). But what we have here is a reminder to the programmer that we want an automated check that measures the result of adding two different currencies together, and confirms that the result matches some specification.
In his exercise, his to do list includes a "simpler" test, which is the one he attempts first
$5 * 2 = $10
That same todo list also includes some other concerns the has about the design, NOT expressed in test form. Also, the list grows as he works through the problem.
In this sense, the test absolutely comes first. We write the test in a language to be consumed by humans. Translating the test into a language understood by the machine comes later.
In the second step, where we describe the test to the machine, things get messier. It is absolutely the case that, as we are designing the test, we are also designing the communication protocol that allows the test to measure what the production code does. So there's a certain amount of communication design that is happening in parallel with the "test" design.
But even here, the test is not specifying all of the classes that are going to exist, it's only specifying what it needs to perform its measurement. We describe a facade, but we aren't specifying what lies beyond that facade.
It can happen, as we design more of the system, that the facade we specify is used only by tests, as a way of communicating with a different underlying design of production code.
(Note: I say classes here for consistency with the question and with early literature, taken primarily from examples in Smalltalk or Java. Feel free to substitute "functions" for "classes" if that makes you more comforatble.)
Now, the most common case is that the facade is the production code; we don't typically add elements to the design until we have a non-speculative motivation for them.
"Unit testing" puts some strain on these ideas - how can you possibly write a unit test without first designing your unit boundaries?
The real answer is an unfortunate one -- Kent Beck didn't write unit tests. He wrote "programmer tests" (a term that got retconned in later) and called them unit tests.
Using the testing language of the 1990s (which is when all this mess started), a more appropriate term is probably "composite tests".
You've also got "the London School", that was trying to figure out how to TDD a particular design style; writing a test for that style requires a more complicated testing facade "up front" (roles and interfaces and stable substitute implementations and so on).
It can also be worth keeping in mind the setting.
(Disclaimer: this isn't something I witnessed first hand - think "based on a true story" rather than "facts")
TDD (and its parent idea "test first" programming in XP) are pushing back against "up front design" of the sort where you decide what the class hierarchy and relationships should be, and document them, before you actually sit down to write the code.
The core argument being that the design process needs shorter feedback loops; that we don't get deeply committed to a particular design until we've acquired a lot of evidence that it is going to work out OK.
All that said, yes it is absolutely the case that TDD, as a technique, works so much better in the hands of someone who is already good at software design. See Michael Feathers on the Look, Ma, no hands! era.
There is no magic.

Does a language describe things beyond itself?

I now have sufficent exposure to the Objective-C that if i'm stuck with anything, I know how to think of the problem in terms of a likely tool I need and go look for it. Simple really. There's A Method For That. So nothings a real problem anymore.
Now I'm looking deeper at the language in broader terms. We write stuff. The compiler hews out all the code to execute it. From a simple flashlight app thats a if/then decision to turn on, to a highly complex accelerometer driven 3D shoot 'em up with blood 'n guts and body parts following all sorts of physics, the compiler prepares the code ready to be executed like a giant railway layout. No matter how random it appears on the screen, everything possible can be generically described and prepared for.
So here's the question:
Are there cases where something completely unexpected to the software designer can still be handled without an execution halt? Maybe I'd better re-frame the question a few different ways: Can a ( objective-C ) program meta-compile within itself in response to an unplanned-for user request? or to re-put my opening remark, are there tools or methods for unlikely descriptions of unlikely problems?
I think #kfb has the right comment about metaprogramming. Check out the Runtime docs in conjunction with metaprogramming tutorials.
Parts of your last question might be in the realm of this doc.
If your looking for ways to reduce the size of your code base for the lesser used features, one idea might be to make the features internet based (assuming connectivity is not a problem).

Avoid using new language features because unfamiliar to most programmers?

While reading "Python scripting for computational science" I came across the following text in the section discussing generators:
Whether to rapidly write a generator or to implement the class methods __iter__ and __next__ depends on the application, personal tast, readibility, and complexity of the iterator. Since generators are very compact and unfamiliar to most programmers, the code often becomes less readable than a corresponding version using __iter__ and __next__.
This led me to wonder whether unfamiliarity (of other programmers) is a good reason NOT to use relatively new and powerful features of a language (like Python generators).
If you don't use it, how can it ever become popular and familiar?
So, my question: is unfamiliarity sometimes a good reason not to use new language features?
Your own unfamiliarity with a language feature may be a good reason to tread lightly. For example, in C#, if you aren't certain about the differences between object y = func1() ?? func2(); and object y = func1() != null ? func1() : func2(); (hint: left-to-right order of evaluation), then maybe you are better off writing the corresponding if clause just because it's clearer what actually is going on. Someone who knows the nuances of the language better may very well come around and refactor later, and in the meantime, the cost is usually low.
However, if you know how to use a language feature, I see little reason to avoid using it simply because others may find it difficult to understand. If you really feel the need to, then add a comment (such as, perhaps, "?? is the _null coalescing operator_") to help fellow developers know what to look for if they can't figure out from the code alone what it is doing, and you are afraid that they may have to go it alone.
This, mind you, is about production code. Experimenting certainly has its place, but its place is not necessarily in the mainline codebase. I always keep a "scratch" project handy for when I want to try something out without risking impact to anything else. There, I often take liberties far beyond those I take in production or to-be-production code.
I wouldn't say that unfamilarity is a good reason to not use new language features. Or for that matter, use new languages.
Lack of support for a new feature across tool vendors could be a reason if you have any concerns about working with multiple vendors.
Since the question is subjective, I'll express the contrary opinion.
If you work where there are code reviews, you'll find out soon enough what your co-workers consider "unfamiliar".
Since they also have to maintain the code, you can try and help them become familiar with the "unfamiliar" code. But, it's ultimately a judgment call, and sometimes, what you think is clear code, isn't.

SOLID vs. YAGNI [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
One of the most frequent arguments I hear for not adhering to the SOLID principles in object-oriented design is YAGNI (although the arguer often doesn't call it that):
"It is OK that I put both feature X and feature Y into the same class. It is so simple why bother adding a new class (i.e. complexity)."
"Yes, I can put all my business logic directly into the GUI code it is much easier and quicker. This will always be the only GUI and it is highly unlikely that significant new requirements will ever come in."
"If in the unlikely case of new requirements my code gets too cluttered I still can refactor for the new requirement. So your 'What if you later need to…' argument doesn't count."
What would be your most convincing arguments against such practice? How can I really show that this is an expensive practice, especially to somebody that doesn't have too much experience in software development.
Design is the management and balance of trade-offs. YAGNI and SOLID aren't conflicting: the former says when to add features, the latter says how, but they both guide the design process. My responses, below, to each of your specific quotes use principles from both YAGNI and SOLID.
It is three times as difficult to build reusable components as single use
components.
A reusable component should be tried out in three different
applications before it will be sufficiently general to accept into a reuse
library.
  — Robert Glass' Rules of Three, Facts and Fallacies of Software Engineering
Refactoring into reusable components has the key element of first finding the same purpose in multiple places, and then moving it. In this context, YAGNI applies by inlining that purpose where needed, without worrying about possible duplication, instead of adding generic or reusable features (classes and functions).
The best way, in the initial design, to show when YAGNI doesn't apply is to identify concrete requirements. In other words, do some refactoring before writing code to show that duplication is not merely possible, but already exists: this justifies the extra effort.
Yes, I can put all my business logic directly into the GUI code it is much easier and quicker. This will always be the only GUI and it is highly unlikely that signifcant new requirements will ever come in.
Is it really the only user interface? Is there a background batch mode planned? Will there ever be a web interface?
What is your testing plan, and will you be testing back-end functionality without a GUI? What will make the GUI easy for you to test, since you usually don't want to be testing outside code (such as platform-generic GUI controls) and instead concentrate on your project.
It is OK that I put both feature X and feature Y into the same class. It is so simple why bother adding a new class (i.e. complexity).
Can you point out a common mistake that needs to be avoided? Some things are simple enough, such as squaring a number (x * x vs squared(x)) for an overly-simple example, but if you can point out a concrete mistake someone made—especially in your project or by those on your team—you can show how a common class or function will avoid that in the future.
If, in the unlikely case of new requirements, my code gets too cluttered I still can refactor for the new requirement. So your "What if you later need to..." argument doesn't count.
The problem here is the assumption of "unlikely". Do you agree it's unlikely? If so, you're in agreement with this person. If not, your idea of the design doesn't agree with this person's—resolving that discrepancy will solve the problem, or at least show you where to go next. :)
I like to think about YAGNI in terms of "half, not half-assed", to borrow the phrase from 37signals (https://gettingreal.37signals.com/ch05_Half_Not_Half_Assed.php). It's about limiting your scope so you can focus on doing the most important things well. It's not an excuse to get sloppy.
Business logic in the GUI feels half-assed to me. Unless your system is trivial, I'd be surprised if your business logic and GUI haven't already changed independently, several times over. So you should follow the SRP ("S" in SOLID) and refactor - YAGNI doesn't apply, because you already need it.
The argument about YAGNI and unnecessary complexity absolutely applies if you're doing extra work today to accommodate hypothetical future requirements. When those "what if later we need to..." scenarios fail to materialize, you're stuck with higher maintenance costs from the abstractions that now get in the way of the changes you actually have. In this case, we're talking about simplifying the design by limiting scope -- doing half, rather than being half-assed.
It sounds like you're arguing with a brick wall. I'm a big fan of YAGNI, but at the same time, I also expect that my code will always be used in at least two places: the application, and the tests. That's why things like business logic in UI code don't work; you can't test business logic separate of UI code in that circumstance.
However, from the responses you're describing, it sounds like the person is simply uninterested in doing better work. At that point, no principle is going to help them; they only want to do the minimum possible. I'd go so far as to say that it's not YAGNI driving their actions, but rather laziness, and you alone aren't going to beat laziness (almost nothing can, except a threatening manager or the loss of a job).
There is no answer, or rather, there is an answer neither you nor your interlocutor might like: both YAGNI and SOLID can be wrong approaches.
Attempting to go for SOLID with an inexperienced team, or a team with tight delivery objectives pretty much guarantees you will end up with an expensive, over-engineered bunch of code... that will NOT be SOLID, just over-engineered (aka welcome to the real-world).
Attempting to go YAGNI for a long term project and hope you can refactor later only works to an extent (aka welcome to the real-world). YAGNI excels at proof-of-concepts and demonstrators, getting the market/contract and then be able to invest into something more SOLID.
You need both, at different points in time.
The correct application of these principles is often not very obvious and depends very much on experience. Which is hard to obtain if you didn't do it yourself. Every programmer should have had experiences of the consequences of doing it wrong, but of course it always should be "not my" project.
Explain to them what the problem is, if they don't listen and you're not in a position to make them listen, let them do the mistakes. If you're too often the one having to fix the problem, you should polish your resume.
In my experience, it's always a judgment call. Yes, you should not worry about every little detail of your implementation, and sometimes sticking a method into an existing class is an acceptable, though ugly solution.
It's true that you can refactor later. The important point is to actually do the refactoring. So I believe the real problem is not the occasional design compromise, but putting off refactoring once it becomes clear there's a problem. Actually going through with it is the hard part (just like with many things in life... ).
As to your individual points:
It is OK that I put both feature X
and feature Y into the same class. It
is so simple why bother adding a new
class (i.e. complexity).
I would point out that having everything in one class is more complex (because the relationship between the methods is more intimate, and harder to understand). Having many small classes is not complex. If you feel the list is getting to long, just organize them into packages, and you'll be fine :-). Personally, I have found that just splitting a class into two or three classes can help a lot with readability, without any further change.
Don't be afraid of small classes, they don't bite ;-).
Yes, I can put all my business logic
directly into the GUI code it is much
easier and quicker. This will always
be the only GUI and it is highly
unlikely that signifcant new
requirements will ever come in.
If someone can say "it is highly unlikely that signifcant new requirements will ever come in." with a straight face, I believe that person really, really needs a reality check. Be blunt, but gentle...
If in the unlikely case of new
requirements my code gets too
cluttered I still can refactor for the
new requirement. So your 'What if you
later need to ...' argument doesn't
count
That has some merit, but only if they actually do refactor later. So accept it, and hold them to their promise :-).
SOLID principles allow software to adapt to change - in both requirements and techical changes (new components, etc), two of your arguments are for unchanging requirements:
"it is highly unlikely that signifcant new requirements will ever come in."
"If in the unlikely case of new requirements"
Could this really be true?
There is no substitute for experience when it comes to the various expenses of development. For many practitioners I think doing things in the lousy, difficult to maintain way has never resulted in problems for them (hey! job security). Over the long term of a product I think these expenses become clear, but doing something about them ahead of time is someone else's job.
There are some other great answers here.
Understandable, flexible and capable of fixes and improvements are always things that you are going to need. Indeed, YAGNI assumes that you can come back and add new features when they prove necessary with relative ease, because nobody is going to do something crazy like bunging irrelevant functionality in a class (YAGNI in that class!) or pushing business logic to UI logic.
There can be times when what seems crazy now was reasonable in the past - sometimes the boundary lines of UI vs business or between different sets of responsibilities that should be in a different class aren't that clear, or even move. There can be times when 3hours of work is absolutely necessary in 2hours time. There are times when people just don't make the right call. For those reasons occasional breaks in this regard will happen, but they are going to get in the way of using the YAGNI principle, not be a cause of it.
Quality unit tests, and I mean unit tests not integration tests, need code that adheres to SOLID. Not necessarily 100%, in fact rarely so, but in your example stuffing two features into one class will make unit testing harder, breaks the single responsibility principle, and makes code maintenance by team newbies much harder (as it is much harder to comprehend).
With the unit tests (assuming good code coverage) you'll be able to refactor feature 1 safe and secure you won't break feature 2, but without unit tests and with the features in same class (simply to be lazy in your example) refactoring is risky at best, disastrous at best.
Bottom line: follow the KIS principle (keep it simple), or for the intellectual the KISS principle (kis stupid). Take each case on merit, there's no global answer but always consider if other coders need to read / maintain the code in the future and the benefit of unit tests in each scenario.
tldr;
SOLID assumes, you understand (somewhat atleast), the future changes to the code, wrt SRP. I will say that is being optimistic about capability to predict.
YAGNI on the other hand, assumes most of the times you don't know future direction of change, which is pessimistic about capability to predict.
Hence it follows that SOLID/SRP asks you to form classes for the code such that it will have single reason for change. E.g. a small GUI change or ServiceCall change.
YAGNI says (if you want to force apply it in this scenario), since you don't know WHAT is going to change, and if a GUI change will cause a GUI+ServiceCall change (similarly A backend change causing GUI+SeviceCall change), just put all that code in single class.
Long answer :
Read the book 'Agile Software Development, Principles, Patterns, and Practices'
I am putting short excerpt from it about SOLID/SRP :
"If,[...]the application is not changing in ways that cause the two responsibilities to change at different times, there is no need to separate them. Indeed, separating them would smell of needless complexity.
There is a corrolary here. An axis of change is an axis of change only if the changes occur. It is not wise to apply SRP—or any other principle, for that matter—if there is no symptom."

Do good tests enable sloppy coding?

Let's say you're coding, and you come across an opportunity for simple code resuse (e.g. pulling a common piece of code out to an accessible place like a Utility class or base class). You might find yourself thinking, "I know it's good to do this, but I have to get this done now, and if I need to make a change to this code, and forget to change it in the other place, my testing framework will let me know."
In other words, you let the awesome tests you (or another developer) has written to remind you to change the code in the other places too.
Is this a legitimate problem that we might find in ourselves or other developers?
You're asking whether unit tests encourage you to rely on them as a method of TODO list? Yes, but I don't think that's sloppy coding. You are, afterall, to start with unit tests failing and code to the test; if you refactor some code and then once again code to the test, that isn't sloppy coding -- it's doing what you're supposed to.
I think the problem with unit tests is simply that you can't cover every corner case in a unit test, and sometimes people assume that a working test means a working app, which isn't true.
In the example you provide, good tests are in fact enabling you to implement sloppy design, however in my experience, bad tests wouldn't have discouraged you from doing the same.
The fallacy in your argument centers around the premise that "getting this done now" means you will save time by implementing sloppy design. The truth of the matter is that you are incurring technical debt whether your tests are good or not. Making a change to that code is now a much more complex task, whether you have a good testing framework to remind you of that or not.
Although immature code may work fine
and be completely acceptable to the
customer, excess quantities will make
a program unmasterable, leading to
extreme specialization of programmers
and finally an inflexible product.
- Ward Cunningham
The strength of good testing practices may be in allowing you to incur that debt with some level of safety. As long as you continue to be aware that this area of the code is now weak, as a result of your choices, then it may be worth the tradeoff -- you ship your product sooner, at the cost of higher debt, with a lower risk of incurring bugs in the short run as a result.
If the tests are good and the code (sloppy or otherwise) pass them, all is good. It would be nice to have good code but sloppy working code is better than good broken code.
I don't use tests as my first option to finding the code that needs changes. I'll use my IDE's search (or refactoring) functionality and look for all the places that call the method in question.
The tests are just a nice addition in case I was accidentally sloppy or accidentally introduced a bug. Test don't make me sloppy from the start, they just reassure me once I think I'm done.
I would say that good tests enable you to fix sloppy coding.
You can certainly write incredibly sloppy code with or without tests. Unit testing makes it slightly easier to get away with it, but only in the short run.
If you have a set of logic copied in two places in your code (IMO the worst thing a developer can do), then you probably have inconsistent tests as well.
The most important job any programmer can do is ruthlessly refactor the code, removing ALL duplication. This almost always shows benefits on even a single iteration.
Why would you think if you had an error in copied code in 2 places that your tests would be any better?
It sounds more to me like sloppy developers and sloppy coding practices are what are leading to sloppy code in your example. The tests you described would prevent the sloppy code from ever getting to far.