Generating PDFs in VB.NET 2005 - vb.net

I am having a problem while generating a PDF doc, the text which I want to show in the PDF doc exceeds the PDF paper range. How can I adjust the text to fit the page range?
This is a sample of my code that shows some questions and answers:
Dim PDF As PDFCreatorPilotLib.PDFDocument3
' create pdf library object
PDF = New PDFCreatorPilotLib.PDFDocument3
' initialize PDF Engine
PDF.StartEngine("demo#demo", "demo")
' set filename
PDF.FileName = "TestVB.PDF"
PDF.AutoLaunch = True ' auto-open generated pdf document
' start document generation
PDF.BeginDoc()
PDF.PDFPAGE_SetActiveFont("Verdana", True, False, False, False, 9, 0)
PDF.PDFPAGE_TextOut(80, 270, 0, Label5.Text)
PDF.PDFPAGE_TextOut(100, 270, 0, Questions1TextBox.Text)
PDF.PDFPAGE_TextOut(80, 300, 0, Label3.Text)
PDF.PDFPAGE_TextOut(100, 300, 0, Answers1TextBox.Text)
PDF.PDFPAGE_TextOut(80, 330, 0, Label6.Text)
PDF.PDFPAGE_TextOut(100, 330, 0, TextBox14.Text)
PDF.PDFPAGE_TextOut(80, 360, 0, Label4.Text)
PDF.PDFPAGE_TextOut(100, 360, 0, TextBox1.Text)
PDF.PDFPAGE_TextOut(80, 390, 0, Label7.Text)
PDF.PDFPAGE_TextOut(100, 390, 0, TextBox12.Text)
PDF.PDFPAGE_TextOut(80, 420, 0, Label4.Text)
PDF.PDFPAGE_TextOut(100, 420, 0, TextBox1.Text)
' finalize document generation
PDF.EndDoc()
End Sub

Related

Generate camera parameters in HalconDotNet

In Halcon one can:
gen_cam_par_area_scan_polynomial (0.008, 0, 0, 0, 0, 0, 5.2e-006, 5.2e-006, 640, 512, 1280, 1024, CameraParam) to get the required camera parameters.
In HalconDotNet (C#) this function does not exist, how can one generate camera parameters in HalconDotNet?
If you look inside function gen_cam_par_area_scan_polynomial (0.008, 0, 0, 0, 0, 0, 5.2e-006, 5.2e-006, 640, 512, 1280, 1024, CameraParam) in HDevelop you can see that it creates tuple with input parameters that you provide and returns it
CameraParam := ['area_scan_polynomial',Focus,K1,K2,K3,P1,P2,Sx,Sy,Cx,Cy,ImageWidth,ImageHeight]
return ()
so in C# you can do
HTuple cameraParam = new HTuple("area_scan_polynomial", 0.008, 0, 0, 0, 0, 0, 5.2e-006, 5.2e-006, 640, 512, 1280, 1024);

How to get data from the device using IOBufferMemoryDescriptor in driverKit

I'm trying to create a driver for my usb device, using iOS and DriverKit.
I'm basing my code in the example used in WWDC: https://github.com/knightsc/USBApp
My driver starts fine when the device is connected and the readCompleted method is called fine, but the action->GetReference() gets only \0 characteres.
Also in order to know that the usb device is actually working I've connected it to my mac first and using PyUSB I can see that it's returning data in chunks of 1024 bytes in the interface 0.
This is the data I get in PyUSB:
array('B', [6, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0, 49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0, 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0, 65, 0, 66, 0, 67, 0, 68, 0, 69, 0, 70, 0, 71, 0, 72, 0, 73, 0, 74, 0, 75, 0, 76, 0, 77, 0, 78, 0, 79, 0, 80, 0, 81, 0, 82, 0, 83, 0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, 89, 0, 90, 0, 91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, 0, 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, 105, 0, 106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, 0, 113, 0, 114, 0, 115, 0, 116, 0, 117, 0, 118, 0, 119, 0, 120, 0, 121, 0, 122, 0, 123, 0, 124, 0, 125, 0, 126, 0, 127, 0, 128, 0, 129, 0, 130, 0, 131, 0, 132, 0, 133, 0, 134, 0, 135, 0, 136, 0, 137, 0, 138, 0, 139, 0, 140, 0, 141, 0, 142, 0, 143, 0, 144, 0, 145, 0, 146, 0, 147, 0, 148, 0, 149, 0, 150, 0, 151, 0, 152, 0, 153, 0, 154, 0, 155, 0, 156, 0, 157, 0, 158, 0, 159, 0, 160, 0, 161, 0, 162, 0, 163, 0, 164, 0, 165, 0, 166, 0, 167, 0, 168, 0, 169, 0, 170, 0, 171, 0, 172, 0, 173, 0, 174, 0, 175, 0, 176, 0, 177, 0, 178, 0, 179, 0, 180, 0, 181, 0, 182, 0, 183, 0, 184, 0, 185, 0, 186, 0, 187, 0, 188, 0, 189, 0, 190, 0, 191, 0, 192, 0, 193, 0, 194, 0, 195, 0, 196, 0, 197, 0, 198, 0, 199, 0, 200, 0, 201, 0, 202, 0, 203, 0, 204, 0, 205, 0, 206, 0, 207, 0, 208, 0, 209, 0, 210, 0, 211, 0, 212, 0, 213, 0, 214, 0, 215, 0, 216, 0, 217, 0, 218, 0, 219, 0, 220, 0, 221, 0, 222, 0, 223, 0, 224, 0, 225, 0, 226, 0, 227, 0, 228, 0, 229, 0, 230, 0, 231, 0, 232, 0, 233, 0, 234, 0, 235, 0, 236, 0, 237, 0, 238, 0, 239, 0, 240, 0, 241, 0, 242, 0, 243, 0, 244, 0, 245, 0, 246, 0, 247, 0, 248, 0, 249, 0, 250, 0, 251, 0, 252, 0, 253, 0, 254, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
This is the Ivars:
struct Mk1dDriver_IVars
{
IOUSBHostInterface *interface;
IOUSBHostPipe *inPipe;
OSAction *ioCompleteCallback;
IOBufferMemoryDescriptor *inData;
uint16_t maxPacketSize;
};
This is the Start method:
kern_return_t
IMPL(Mk1dDriver, Start)
{
kern_return_t ret;
IOUSBStandardEndpointDescriptors descriptors;
ret = Start(provider, SUPERDISPATCH);
__Require(kIOReturnSuccess == ret, Exit);
ret = RegisterService();
if (ret != kIOReturnSuccess)
{
Log("Start() - Failed to register service with error: 0x%08x.", ret);
goto Exit;
}
ivars->interface = OSDynamicCast(IOUSBHostInterface, provider);
__Require_Action(NULL != ivars->interface, Exit, ret = kIOReturnNoDevice);
ret = ivars->interface->Open(this, 0, NULL);
__Require(kIOReturnSuccess == ret, Exit);
ret = ivars->interface->CopyPipe(kMyEndpointAddress, &ivars->inPipe);
__Require(kIOReturnSuccess == ret, Exit);
ret = ivars->interface->CreateIOBuffer(kIOMemoryDirectionIn,
1024,
&ivars->inData);
__Require(kIOReturnSuccess == ret, Exit);
ret = OSAction::Create(this,
Mk1dDriver_ReadComplete_ID,
IOUSBHostPipe_CompleteAsyncIO_ID,
0,
&ivars->ioCompleteCallback);
__Require(kIOReturnSuccess == ret, Exit);
ret = ivars->inPipe->AsyncIO(ivars->inData,
ivars->maxPacketSize,
ivars->ioCompleteCallback,
0);
__Require(kIOReturnSuccess == ret, Exit);
os_log(OS_LOG_DEFAULT,"Finish");
// WWDC slides don't show the full function
// i.e. this is still unfinished
Exit:
return ret;
}
The only difference in this compared with the code from Apple is that I set capacity in the method CreateIOBuffer to 1024. This is because if I leave it to 0 it will return an error that memory could not be allocated: kIOReturnNoMemory
And the ReadComplete method:
void
IMPL(Mk1dDriver, ReadComplete)
{
char output[1024];
memcpy(action->GetReference(), &output, 1024);
os_log(OS_LOG_DEFAULT,"ReadComplete");
If I put a breakpoint in the log, I can see all the positions in output will be \0
Any idea what I'm doing wrong?
Thanks
You need to store some reference to the IOBufferMemoryDescriptor* that you asked AsyncIO to write to when the data from the device is received (ivars->inData) so that you can access it when the completion callback ReadComplete is called. You can store this in the memory that you can access with GetReference().
You should set the size of the custom memory that should be allocated for you. Currently you are allocating 0 bytes. See OSAction::Create.
In ReadComplete you can then call GetReference() to access the memory. Since you know that this memory contains a reference to the IOBufferMemoryDescriptor that data has been written to, you can then use it with memcpy.
Something like this:
ret = OSAction::Create(this,
Mk1dDriver_ReadComplete_ID,
IOUSBHostPipe_CompleteAsyncIO_ID,
sizeof(IOBufferMemoryDescriptor*),
&ivars->ioCompleteCallback);
memcpy(ivars->ioCompleteCallback->GetReference(),
ivars->inData, sizeof(IOBufferMemoryDescriptor*));
First parameter to memcpy is the destination.
void IMPL(Mk1dDriver, ReadComplete)
{
IOBufferMemoryDescriptor* ptr;
memcpy(ptr, action->GetReference(), sizeof(IOBufferMemoryDescriptor*));
IOAddressSegment addressSegement{};
ptr->GetAddressRange(&addressSegement);
char output[1024];
memcpy(output, addressSegement.address, addressSegement.length);
}

Can't use deployed TF BERT model to get GCloud online predictions from SavedModel: "Bad Request" error

I trained a BERT model based on this notebook.
I export it as a tf SavedModel this way:
def serving_input_fn():
receiver_tensors = {
"input_ids": tf.placeholder(dtype=tf.int32, shape=[1, MAX_SEQ_LENGTH])
}
features = {
"input_ids": receiver_tensors['input_ids'],
"input_mask": 1 - tf.cast(tf.equal(receiver_tensors['input_ids'], 0), dtype=tf.int32),
"segment_ids": tf.zeros(dtype=tf.int32, shape=[1, MAX_SEQ_LENGTH]),
"label_ids": tf.placeholder(tf.int32, [None], name='label_ids')
}
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
estimator._export_to_tpu = False
estimator.export_saved_model("export", serving_input_fn)
Then if I try to use the saved model locally it works:
from tensorflow.contrib import predictor
predict_fn = predictor.from_saved_model("export/1575241274/")
print(predict_fn({
"input_ids": [[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
}))
# {'probabilities': array([[-0.01023898, -4.5866656 ]], dtype=float32), 'labels': 0}
Then I uploaded the SavedModel to a bucket and created a model and a model version on gcloud this way:
gcloud alpha ai-platform versions create v1gpu --model [...] --origin=[...] --python-version=3.5 --runtime-version=1.14 --accelerator=^:^count=1:type=nvidia-tesla-k80 --machine-type n1-highcpu-4
No issue there, the model is deployed and displayed as working in the console.
But if I try to get predictions, as such:
import googleapiclient.discovery
service = googleapiclient.discovery.build('ml', 'v1')
name = 'projects/[project_name]/models/[model_name]/versions/v1gpu'
response = service.projects().predict(
name=name,
body={'instances': [{
"input_ids": [[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
}]}
).execute()
print(response["predictions"])
All I get is the following error:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.6/dist-packages/googleapiclient/_helpers.py", line 130, in positional_wrapper
return wrapped(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/googleapiclient/http.py", line 851, in execute
raise HttpError(resp, content, uri=self.uri)
googleapiclient.errors.HttpError: <HttpError 400 when requesting https://ml.googleapis.com/v1/projects/[project_name]/models/[model_name]/versions/v1gpu:predict?alt=json returned "Bad Request">
I get the same error if I test the model from the gcloud console using the "Test your model with sample input data" feature.
Edit:
The saved_model has a tagset "serve" and signature_def "serving_default".
Output of "saved_model_cli show --dir 1575241274/ --tag_set serve --signature_def serving_default":
The given SavedModel SignatureDef contains the following input(s):
inputs['input_ids'] tensor_info:
dtype: DT_INT32
shape: (1, 128)
name: Placeholder:0
The given SavedModel SignatureDef contains the following output(s):
outputs['labels'] tensor_info:
dtype: DT_INT32
shape: ()
name: loss/Squeeze:0
outputs['probabilities'] tensor_info:
dtype: DT_FLOAT
shape: (1, 2)
name: loss/LogSoftmax:0
Method name is: tensorflow/serving/predict
The body of the request sent to the API has the form:
{"instances": [<instance 1>, <instance 2>, ...]}
As specified in documentation we need something like this:
{
"instances": [
<object>
...
]
}
In this case you have:
{
"instances": [
{
"input_ids":
[ <object> ]
}
...
]
}
You need to replace input_ids to instances:
{
"instances":
[
[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
]
}
Note If you can show the saved_model_cli will be great.
Also gcloud local predict command is also a good option for testing.
It depend of the signature of the model. In my case I have the following signature (just keeping the input part):
The given SavedModel SignatureDef contains the following input(s):
inputs['attention_mask'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_attention_mask:0
inputs['input_ids'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_input_ids:0
inputs['token_type_ids'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_token_type_ids:0
and I need to pass data in the following format (in this case 2 examples):
{'instances':
[
{'input_ids': [101, 143, 18267, 15470, 90395, ...],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, .....],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, .....]
},
{'input_ids': [101, 17664, 143, 30728, .........],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, .......],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, ....]
}
]
}
I am using it with a Keras model with Tensorflow 2.2.0
I guess in your case you need (for 2 examples):
{'instances':
[
{'input_ids': [101, 143, 18267, 15470, 90395, ...]},
{'input_ids': [101, 17664, 143, 30728, .........]}
]
}

File Upload to Local using Acr in Elixir

I am using Arc.Definition(https://github.com/stavro/arc) for uploading an image to the Local Storage.
My file_service.ex is below:
defmodule MyApp.FileService do
use Arc.Definition
use Arc.Ecto.Definition
#image_types ~w(.jpg .jpeg .png .gif)
#versions [:original]
#default_filename "image.png"
#heights %{
medium: 400
}
#widths %{
medium: 400
}
def __storage, do: Arc.Storage.Local
def upload_image(%Plug.Upload{} = image, resource_type, resource_id) do
store({%Plug.Upload{path: image.path, filename: #default_filename},
%{resource_type: resource_type, resource_id: resource_id}})
end
def upload_base64_image(base64_image, resource_type, resource_id) do
store({%{filename: #default_filename, binary: base64_image_to_binary(base64_image)}})
end
def delete_file(image_url, resource) do
delete({image_url, resource})
end
defp base64_image_to_binary("data:image/" <> rest) do
rest
|> String.replace("\n", "")
|> String.split(",")
|> Enum.at(1)
|> Base.decode64!
end
defp base64_image_to_binary(base64_image) do
base64_image
|> String.replace("\n", "")
|> Base.decode64!
end
end
But, I am getting an error saying "no function clause matching in Arc.Actions.Store.store".
The stack trace is below:
** (FunctionClauseError) no function clause matching in Arc.Actions.Store.store/2
(arc) lib/arc/actions/store.ex:8: Arc.Actions.Store.store(MyApp.FileService, {%{binary: <<255, 216,
255, 225, 3, 48, 69, 120, 105, 102, 0, 0, 73, 73, 42, 0, 8, 0, 0, 0,
58, 0, 50, 1, 2, 0, 20, 0, 0, 0, 198, 2, 0, 0, 15, 1, 2, 0, 10, 0, 0,
0, 218, 2, 0, 0, 1, 1, ...>>, filename: "image.png"}})
Anyone, please help?
Your code
def upload_base64_image(base64_image, resource_type, resource_id) do
store({%{filename: #default_filename, binary: base64_image_to_binary(base64_image)}})
end
's store is using wrong.
It only accept tuple(file, scope) or filepath(map).
So it should be: store(%{filename: #default_filename, binary: base64_image_to_binary(base64_image)}).
See github's example:
# Store a file from a connection body
{:ok, data, _conn} = Plug.Conn.read_body(conn)
Avatar.store(%{filename: "file.png", binary: data})
I figure it out by reading traceback and arc's store implementaion:
def store(definition, {file, scope}) when is_binary(file) or is_map(file) do
put(definition, {Arc.File.new(file), scope})
end
def store(definition, filepath) when is_binary(filepath) or is_map(filepath) do
store(definition, {filepath, nil})
end

Multiple pixel searches with mouse clicks

WinActivate("BlueStacks App Player")
While 1
$Button1 = PixelSearch(0, 0, 1365, 767, 0x79b82c)
MouseClick("primary", $Button1[0], $Button1[1], 1, 0)
If(PixelSearch(0, 0, 1365, 767, 0x6e6e6e) Or PixelSearch(0, 0, 1365, 767, 0x5e5e5e)) Then
MouseClick("primary", 748, 274, 1, 0)
Else
$Button2 = PixelSearch(0, 0, 1365, 767, 0xfca378)
MouseClick("primary", $Button2[0], $Button2[1], 8, 0)
$Button3 = PixelSearch(0, 0, 1365, 767, 0xfd64a7)
MouseClick("primary", $Button3[0], $Button3[1], 1, 0)
EndIf
WEnd
I am making an automation script for Bluestacks app player.
What I am trying to do is PixelSearch() finds location of the button and then left clicks it, which opens another new window. And again another PixelSearch() finds the new pixels and clicks 8 times on one coordinate and 1 time on another.
I made the infinite loop as I want this to occur infinitely. Problem is, only the first PixelSearch() and MouseClick() works; after the first click the function stops. I want the script to continue even after the new window opens (the window opens inside the same app in Bluestacks).
Try this code :
WinActivate("BlueStacks App Player")
While 1
$Button1 = PixelSearch(0, 0, 1365, 767, 0x79b82c)
If not #error then
MouseClick("", $Button1[0], $Button1[1], 1, 0)
If PixelSearch(0, 0, 1365, 767, 0x6e6e6e) Or PixelSearch(0, 0, 1365, 767, 0x5e5e5e) Then
MouseClick("", 748, 274, 1, 0)
Else
$Button2 = PixelSearch(0, 0, 1365, 767, 0xfca378)
If not #error then MouseClick("", $Button2[0], $Button2[1], 8, 0)
$Button3 = PixelSearch(0, 0, 1365, 767, 0xfd64a7)
If not #error then MouseClick("", $Button3[0], $Button3[1], 1, 0)
EndIf
EndIf
WEnd