How to instruct CMake to find specific version of Curl - cmake

I have built Curl from source and it's installed in /usr/local/lib/libcurl.so
I am now trying to instruct CMake to statically link this version with my application (if dynamic is easier, that's fine).
From other Stackoverflow questions I tried this:
option(CURL_STATICLIB "Set to ON to build libcurl with static linking." ON)
option(LIBCURL_ENABLE "Enable or disable the requirement of libcurl" ON)
set(CURL_LIBRARY "-lcurl")
set(CURL_PATH "/usr/local/lib")
find_library(LIB_CURL NAMES libcurl PATHS ${CURL_PATH})
include_directories(${CURL_INCLUDE_DIR})
message(STATUS "LIB_CURL: " ${LIB_CURL})
add_definitions(-DCURL_STATICLIB)
target_link_libraries(my_project PRIVATE ${OPENSSL_LIBRARIES} ${CURL_LIBRARIES})
but it cannot find libcurl.so:
LIB_CURL: LIB_CURL-NOTFOUND
(My CMake knowledge is basic, any additional tips to improve the above are welcome)

option(CURL_STATICLIB "Set to ON to build libcurl with static linking." ON)
option(LIBCURL_ENABLE "Enable or disable the requirement of libcurl" ON)
option is used wrongly. curl is not configured in that CMakeLists, therefore option should be removed.
Try
find_library(LIB_CURL NAMES curl PATHS ${CURL_PATH})
It's unclear, you define -DCURL_STATICLIB but look for libcurl.so

Related

Using Gnu autotools library in CMake project [duplicate]

Looking around on the net I have seen a lot of code like this:
include(FindPkgConfig)
pkg_search_module(SDL2 REQUIRED sdl2)
target_include_directories(app SYSTEM PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries(app ${SDL2_LIBRARIES})
However that seems to be the wrong way about doing it, as it only uses the include directories and libraries, but ignored defines, library paths and other flags that might be returned by pkg-config.
What would be the correct way to do this and ensure that all compile and link flags returned by pkg-config are used by the compiled app? And is there a single command to accomplish this, i.e. something like target_use(app SDL2)?
ref:
include()
FindPkgConfig
First of, the call:
include(FindPkgConfig)
should be replaced with:
find_package(PkgConfig)
The find_package() call is more flexible and allows options such as REQUIRED, that do things automatically that one would have to do manually with include().
Secondly, manually calling pkg-config should be avoid when possible. CMake comes with a rich set of package definitions, found in Linux under /usr/share/cmake-3.0/Modules/Find*cmake. These provide more options and choice for the user than a raw call to pkg_search_module().
As for the mentioned hypothetical target_use() command, CMake already has that built-in in a way with PUBLIC|PRIVATE|INTERFACE. A call like target_include_directories(mytarget PUBLIC ...) will cause the include directories to be automatically used in every target that uses mytarget, e.g. target_link_libraries(myapp mytarget). However this mechanism seems to be only for libraries created within the CMakeLists.txt file and does not work for libraries acquired with pkg_search_module(). The call add_library(bar SHARED IMPORTED) might be used for that, but I haven't yet looked into that.
As for the main question, this here works in most cases:
find_package(PkgConfig REQUIRED)
pkg_check_modules(SDL2 REQUIRED sdl2)
...
target_link_libraries(testapp ${SDL2_LIBRARIES})
target_include_directories(testapp PUBLIC ${SDL2_INCLUDE_DIRS})
target_compile_options(testapp PUBLIC ${SDL2_CFLAGS_OTHER})
The SDL2_CFLAGS_OTHER contains defines and other flags necessary for a successful compile. The flags SDL2_LIBRARY_DIRS and SDL2_LDFLAGS_OTHER are however still ignored, no idea how often that would become a problem.
More documentation here http://www.cmake.org/cmake/help/latest/module/FindPkgConfig.html
If you're using cmake and pkg-config in a pretty normal way, this solution works.
If, however, you have a library that exists in some development directory (such as /home/me/hack/lib), then using other methods seen here fail to configure the linker paths. Libraries that are not found under the typical install locations would result in linker errors, like /usr/bin/ld: cannot find -lmy-hacking-library-1.0. This solution fixes the linker error for that case.
Another issue could be that the pkg-config files are not installed in the normal place, and the pkg-config paths for the project need to be added using the PKG_CONFIG_PATH environment variable while cmake is running (see other Stack Overflow questions regarding this). This solution also works well when you use the correct pkg-config path.
Using IMPORTED_TARGET is key to solving the issues above. This solution is an improvement on this earlier answer and boils down to this final version of a working CMakeLists.txt:
cmake_minimum_required(VERSION 3.14)
project(ya-project C)
# the `pkg_check_modules` function is created with this call
find_package(PkgConfig REQUIRED)
# these calls create special `PkgConfig::<MODULE>` variables
pkg_check_modules(MY_PKG REQUIRED IMPORTED_TARGET any-package)
pkg_check_modules(YOUR_PKG REQUIRED IMPORTED_TARGET ya-package)
add_executable(program-name file.c ya.c)
target_link_libraries(program-name PUBLIC
PkgConfig::MY_PKG
PkgConfig::YOUR_PKG)
Note that target_link_libraries does more than change the linker commands. It also propagates other PUBLIC properties of specified targets like compiler flags, compiler defines, include paths, etc., so, use the PUBLIC keyword with caution.
It's rare that one would only need to link with SDL2. The currently popular answer uses pkg_search_module() which checks for given modules and uses the first working one.
It is more likely that you want to link with SDL2 and SDL2_Mixer and SDL2_TTF, etc... pkg_check_modules() checks for all the given modules.
# sdl2 linking variables
find_package(PkgConfig REQUIRED)
pkg_check_modules(SDL2 REQUIRED sdl2 SDL2_ttf SDL2_mixer SDL2_image)
# your app
file(GLOB SRC "my_app/*.c")
add_executable(my_app ${SRC})
target_link_libraries(my_app ${SDL2_LIBRARIES})
target_include_directories(my_app PUBLIC ${SDL2_INCLUDE_DIRS})
target_compile_options(my_app PUBLIC ${SDL2_CFLAGS_OTHER})
Disclaimer: I would have simply commented on Grumbel's self answer if I had enough street creds with stackoverflow.
Most of the available answers fail to configure the headers for the pkg-config library. After meditating on the Documentation for FindPkgConfig I came up with a solution that provides those also:
include(FindPkgConfig)
if(NOT PKG_CONFIG_FOUND)
message(FATAL_ERROR "pkg-config not found!" )
endif()
pkg_check_modules(<some-lib> REQUIRED IMPORTED_TARGET <some-lib>)
target_link_libraries(<my-target> PkgConfig::<some-lib>)
(Substitute your target in place of <my-target> and whatever library in place of <some-lib>, accordingly.)
The IMPORTED_TARGET option seems to be key and makes everything then available under the PkgConfig:: namespace. This was all that was required and also all that should be required.
There is no such command as target_use. But I know several projects that have written such a command for their internal use. But every project want to pass additional flags or defines, thus it does not make sense to have it in general CMake. Another reason not to have it are C++ templated libraries like Eigen, there is no library but you only have a bunch of include files.
The described way is often correct. It might differ for some libraries, then you'll have to add _LDFLAGS or _CFLAGS. One more reason for not having target_use. If it does not work for you, ask a new question specific about SDL2 or whatever library you want use.
If you are looking to add definitions from the library as well, the add_definitions instruction is there for that. Documentation can be found here, along with more ways to add compiler flags.
The following code snippet uses this instruction to add GTKGL to the project:
pkg_check_modules(GTKGL REQUIRED gtkglext-1.0)
include_directories(${GTKGL_INCLUDE_DIRS})
link_directories(${GTKGL_LIBRARY_DIRS})
add_definitions(${GTKGL_CFLAGS_OTHER})
set(LIBS ${LIBS} ${GTKGL_LIBRARIES})
target_link_libraries([insert name of program] ${LIBS})

Best practices with CMake with non-standard include and library directories

I have been trying to build Mozilla RR on a Linux box at work using CMake. We have a slightly eccentric arrangement where shared libraries are stored on network drives in locations like /sw/external/product-name/linux64_g63.dll/. Further, I have built some dependencies for the project in $HOME/sw/. (I am not a sudoer on this box.)
I am rather baffled as how I am supposed to communicate to CMake to look in non-standard directories. So far I have fudged:
PKG_CONFIG_PATH=$HOME/sw/capnproto-0.6.1/lib/pkconfig \
CC=gcc-6.3 CXX=g++-6.3 \
cmake \
-DCMAKE_INSTALL_PREFIX=$HOME/sw/rr-5.1.0 \
-DPYTHON_EXECUTABLE=$HOME/bin/python2 \
-DCMAKE_FIND_ROOT_PATH=$HOME/sw/libseccomp-2.2.3/ \
../src/
Which is obviously not a scalable solution, but it does at least complete the configuration successfully and emit some Makefiles.
If I omit -DCMAKE_FIND_ROOT_PATH=$HOME/sw/libseccomp-2.2.3/, CMake fails, complaining about a missing libseccomp-2.2.3 dependency. But it works if I do have that definition, telling me that CMake understands where the libseccomp-2.2.3 files are and so will properly add the paths to the necessary compiler invocations.
However, make does not succeed, because gcc fails to find a required header file from the libseccomp probject. Examining make VERBOSE=1, I find that CMake hasn't added -I$HOME/sw/libseccomp-2.2.3/include to the gcc invocation.
I feel like this is not the right approach. The other answers I have looked at tell me to modify the CMakeLists.txt file, but surely
that is not going to be scalable across multiple CMake projects, and
for each project, that will need me to maintain a separate CMakeLists.txt file for every platform (Solaris/Linux/Darwin/Cygwin) I build the software on.
Is there a canonical solution to solving this problem? Perhaps a per-site configuration file that will tell CMake how to find libraries and headers, for all projects I build on that site?
Your approach is correct, but cmake is never told to include SECCOMP - see end of this post.
The way cmake can be informed about custom dependency directory depends on how the dependency is searched (i.e. on what is written in CMakeLists.txt).
find_package/find_library/find_path/find_program
If dependency is found with one of above-mentioned commands, custom search directories can be easily added with CMAKE_PREFIX_PATH. There is no need to add full path to include, lib or bin - when package root is added find_-command will check appropriate sub-directories. CMAKE_PREFIX_PATH can be also set with environment variable.
Second option is CMAKE_FIND_ROOT_PATH. Every path added to CMAKE_FIND_ROOT_PATH list treated as separate root directory and is searched before system root directory.
Note that CMAKE_FIND_ROOT_PATH will be ignored by find_-commands with NO_CMAKE_FIND_ROOT_PATH argument.
Following four variables may be used to tune the usage of CMAKE_FIND_ROOT_PATH:
CMAKE_FIND_ROOT_PATH_MODE_PACKAGE
CMAKE_FIND_ROOT_PATH_MODE_INCLUDE
CMAKE_FIND_ROOT_PATH_MODE_LIBRARY
CMAKE_FIND_ROOT_PATH_MODE_PROGRAM
When use of host system default libraries is undesired setting CMAKE_FIND_ROOT_PATH_MODE_INCLUDE and CMAKE_FIND_ROOT_PATH_MODE_LIBRARY to ONLY is a good practice. If dependency library or header is not found in CMAKE_FIND_ROOT_PATH the configuration will fail. If cmake is allowed search system paths too, it is most likely that errors will occur during linking step or even runtime.
See find_package docs for more details.
find_package only
All above applies to find_package command too.
find_package can operate in two modes MODULE and CONFIG.
In MODULE mode cmake uses Find[PackageName].cmake script (module) to find dependent package. CMake comes with large number of modules and custom modules can be added with CMAKE_MODULE_PATH variable. Often find-modules can be informed about custom search paths via environment or cmake variables.
E.g. FindGTest.cmake searches path stored in GTEST_ROOT variable.
If no find module is available, find_package enters CONFIG mode. If a dependency package provides [PackageName]Config.cmake or [LowercasePackageName]-config.cmake cmake can be easily informed about that package with [PackageName]_DIR variable.
Example:
CMakeLists.txt contains:
find_package(Qt5)
FindQt5.cmake is not available, but ~/Qt5/Qt5.8/lib/cmake/Qt5Config.cmake file exists, so add
-DQt5_DIR="${HOME}/Qt5/Qt5.8/lib/cmake"
to cmake call.
pkg-config
CMake can use information provided by external pkg-config tool. It is usually done with pkg_check_modules command. Directory used by pkg-config can be customized with PKG_CONFIG_PATH environment variable. According to cmake documentation instead of setting PKG_CONFIG_PATH, custom .pc-files directories can be added via CMAKE_PREFIX_PATH. If CMake version is pre-3.1, PKG_CONFIG_USE_CMAKE_PREFIX_PATH have to be set to TRUE(ON) to enable this feature.
Methods of customizing dependencies search path is defined by CMakeLists.txt content. There is no universal solution here.
And now back to missing SECCOMP headers...
In CMakeLists.txt SECCOMP header is found with
find_path(SECCOMP NAMES "linux/seccomp.h")
but I cannot find any command telling CMake to use the found header. For example:
target_include_directories(<target_name> ${SECCOMP})
or globally:
include_directories(${SECCOMP})
I belive that CMakeLists.txt should be fixed. It is not a platform dependent solution.

What is the proper way to use `pkg-config` from `cmake`?

Looking around on the net I have seen a lot of code like this:
include(FindPkgConfig)
pkg_search_module(SDL2 REQUIRED sdl2)
target_include_directories(app SYSTEM PUBLIC ${SDL2_INCLUDE_DIRS})
target_link_libraries(app ${SDL2_LIBRARIES})
However that seems to be the wrong way about doing it, as it only uses the include directories and libraries, but ignored defines, library paths and other flags that might be returned by pkg-config.
What would be the correct way to do this and ensure that all compile and link flags returned by pkg-config are used by the compiled app? And is there a single command to accomplish this, i.e. something like target_use(app SDL2)?
ref:
include()
FindPkgConfig
First of, the call:
include(FindPkgConfig)
should be replaced with:
find_package(PkgConfig)
The find_package() call is more flexible and allows options such as REQUIRED, that do things automatically that one would have to do manually with include().
Secondly, manually calling pkg-config should be avoid when possible. CMake comes with a rich set of package definitions, found in Linux under /usr/share/cmake-3.0/Modules/Find*cmake. These provide more options and choice for the user than a raw call to pkg_search_module().
As for the mentioned hypothetical target_use() command, CMake already has that built-in in a way with PUBLIC|PRIVATE|INTERFACE. A call like target_include_directories(mytarget PUBLIC ...) will cause the include directories to be automatically used in every target that uses mytarget, e.g. target_link_libraries(myapp mytarget). However this mechanism seems to be only for libraries created within the CMakeLists.txt file and does not work for libraries acquired with pkg_search_module(). The call add_library(bar SHARED IMPORTED) might be used for that, but I haven't yet looked into that.
As for the main question, this here works in most cases:
find_package(PkgConfig REQUIRED)
pkg_check_modules(SDL2 REQUIRED sdl2)
...
target_link_libraries(testapp ${SDL2_LIBRARIES})
target_include_directories(testapp PUBLIC ${SDL2_INCLUDE_DIRS})
target_compile_options(testapp PUBLIC ${SDL2_CFLAGS_OTHER})
The SDL2_CFLAGS_OTHER contains defines and other flags necessary for a successful compile. The flags SDL2_LIBRARY_DIRS and SDL2_LDFLAGS_OTHER are however still ignored, no idea how often that would become a problem.
More documentation here http://www.cmake.org/cmake/help/latest/module/FindPkgConfig.html
If you're using cmake and pkg-config in a pretty normal way, this solution works.
If, however, you have a library that exists in some development directory (such as /home/me/hack/lib), then using other methods seen here fail to configure the linker paths. Libraries that are not found under the typical install locations would result in linker errors, like /usr/bin/ld: cannot find -lmy-hacking-library-1.0. This solution fixes the linker error for that case.
Another issue could be that the pkg-config files are not installed in the normal place, and the pkg-config paths for the project need to be added using the PKG_CONFIG_PATH environment variable while cmake is running (see other Stack Overflow questions regarding this). This solution also works well when you use the correct pkg-config path.
Using IMPORTED_TARGET is key to solving the issues above. This solution is an improvement on this earlier answer and boils down to this final version of a working CMakeLists.txt:
cmake_minimum_required(VERSION 3.14)
project(ya-project C)
# the `pkg_check_modules` function is created with this call
find_package(PkgConfig REQUIRED)
# these calls create special `PkgConfig::<MODULE>` variables
pkg_check_modules(MY_PKG REQUIRED IMPORTED_TARGET any-package)
pkg_check_modules(YOUR_PKG REQUIRED IMPORTED_TARGET ya-package)
add_executable(program-name file.c ya.c)
target_link_libraries(program-name PUBLIC
PkgConfig::MY_PKG
PkgConfig::YOUR_PKG)
Note that target_link_libraries does more than change the linker commands. It also propagates other PUBLIC properties of specified targets like compiler flags, compiler defines, include paths, etc., so, use the PUBLIC keyword with caution.
It's rare that one would only need to link with SDL2. The currently popular answer uses pkg_search_module() which checks for given modules and uses the first working one.
It is more likely that you want to link with SDL2 and SDL2_Mixer and SDL2_TTF, etc... pkg_check_modules() checks for all the given modules.
# sdl2 linking variables
find_package(PkgConfig REQUIRED)
pkg_check_modules(SDL2 REQUIRED sdl2 SDL2_ttf SDL2_mixer SDL2_image)
# your app
file(GLOB SRC "my_app/*.c")
add_executable(my_app ${SRC})
target_link_libraries(my_app ${SDL2_LIBRARIES})
target_include_directories(my_app PUBLIC ${SDL2_INCLUDE_DIRS})
target_compile_options(my_app PUBLIC ${SDL2_CFLAGS_OTHER})
Disclaimer: I would have simply commented on Grumbel's self answer if I had enough street creds with stackoverflow.
Most of the available answers fail to configure the headers for the pkg-config library. After meditating on the Documentation for FindPkgConfig I came up with a solution that provides those also:
include(FindPkgConfig)
if(NOT PKG_CONFIG_FOUND)
message(FATAL_ERROR "pkg-config not found!" )
endif()
pkg_check_modules(<some-lib> REQUIRED IMPORTED_TARGET <some-lib>)
target_link_libraries(<my-target> PkgConfig::<some-lib>)
(Substitute your target in place of <my-target> and whatever library in place of <some-lib>, accordingly.)
The IMPORTED_TARGET option seems to be key and makes everything then available under the PkgConfig:: namespace. This was all that was required and also all that should be required.
There is no such command as target_use. But I know several projects that have written such a command for their internal use. But every project want to pass additional flags or defines, thus it does not make sense to have it in general CMake. Another reason not to have it are C++ templated libraries like Eigen, there is no library but you only have a bunch of include files.
The described way is often correct. It might differ for some libraries, then you'll have to add _LDFLAGS or _CFLAGS. One more reason for not having target_use. If it does not work for you, ask a new question specific about SDL2 or whatever library you want use.
If you are looking to add definitions from the library as well, the add_definitions instruction is there for that. Documentation can be found here, along with more ways to add compiler flags.
The following code snippet uses this instruction to add GTKGL to the project:
pkg_check_modules(GTKGL REQUIRED gtkglext-1.0)
include_directories(${GTKGL_INCLUDE_DIRS})
link_directories(${GTKGL_LIBRARY_DIRS})
add_definitions(${GTKGL_CFLAGS_OTHER})
set(LIBS ${LIBS} ${GTKGL_LIBRARIES})
target_link_libraries([insert name of program] ${LIBS})

CMake command-line help for user options

I have some options in my CMakeLists.txt file that can be selected with -D on the command line, like this:
# Set some options the user may choose
OPTION(USE_MPI "Use the MPI library for parallelization" OFF)
OPTION(USE_OPENMP "Use OpenMP for parallelization" OFF)
OPTION(TESTING "Enable testing of both Fortran and Python code" OFF)
OPTION(PYTHON_TOOLS "Build the python helper tools" OFF)
OPTION(BUILD_DOCS "Build the documentation; turns on PYTHON_TOOLS" OFF)
and I can activate one of them with something like
$ cmake . -DUSE_MPI=ON
Sometimes I forget what the options I have chosen are. It would be nice if there was some sort of -h flag I could use to display those on the command line in an automated way (in the style of python's argparse).
Is there an automated way to generate help documentation for a particular CMakeLists.txt, and/or call that help with some sort of -h or --help flag? I'm looking for something that will give me this behavior:
$ cmake . --help
USE_MPI - Use the MPI library for parallelization (Default: OFF)
USE_OPENMP - Use OpenMP for parallelization (Default: OFF)
TESTING - Enable testing of both Fortran and Python code (Default: OFF)
PYTHON_TOOLS - Build the python helper tools (Default: OFF)
BUILD_DOCS - Build the documentation; turns on PYTHON_TOOLS (Default: OFF)
If there is no automated way, is there at least an easy way to pass --help or -h to CMakeLists.txt so that I can manually write a help message?
I think the closest to what you're looking for is the -L command line arg. Running cmake . -LH should configure your project, then output all your cached, non-advanced variables along with their help strings.
The i arg also allows you to see the current values of options, but this actually runs cmake in command line "wizard mode" - it configures the project, asking you to set/update each variable one at a time.

CMake basic usage

I'm trying to build my library with CMake. I'm working on CMakeLists.txt .
I want to be able to do the following:
I have a directories called
include
src
Then inside of these there is
Agui folder.
And in that folder are the sub folders of the library.
So far from what I've gathered:
I'll need to do:
set(AGUI_SOURCES
src/Agui/Rectangle.cpp
src/Agui/xxx.cpp (and so on)
)
Then I think need to do:
include_directories(./include)
And then I'm not quite sure.
I know that add_library will be involved but I'm not sure how.
The thing is, I want to create 2 options: DLL, or static.
If it is DLL, then AGUI_BUILD_DLL must be defined.
So based on this information:
Am I on the right track?
How do I create the options
What do I put in add_library
How do I add the preprocessor AGUI_BUILD_DLL if the user wants the DLL version?
If any or all of these could be answered I would greatly appreciate it.
Thanks
I would recommend taking a look at the CMake tutorial which covers adding executables, libraries, system introspection etc. The cmake command also self documents, so on the command line entering,
cmake --help-command add_library
would give you the documentation for the add_library command. You could use the --help-commands to get a full listing of all CMake command documentation. So you can use the option command to add an option for building shared or static, and use the add_definitions command to add a preprocessor definition.
For example,
option(BUILD_SHARED "Build shared libraries" OFF)
if(BUILD_SHARED)
add_definitions(-DAGUI_BUILD_DLL)
add_library(agui SHARED ${AGUI_SOURCES})
else()
add_library(agui STATIC ${AGUI_SOURCES})
endif()
You should note targetName_EXPORTS will be defined when building the library, and so can be used in the declspec logic. This is done by CMake, and is also useful when using visibility support in GCC on Unix systems.
Maybe , do not know :)
OPTION(AGUI_BUILD_DLL "Build agui DLL" OFF)
somewhere near the start of CMakeLists.txt. You may want to use ON instead of OFF - depends on whether you want DLL build to de default.
3,4.
if(AGUI_BUILD_DLL)
add_library(agui SHARED ${AGUI_SOURCES})
set_target_properties(agui PROPERTIES DEFINE_SYMBOL "AGUI_BUILD_DLL")
else()
add_library(agui STATIC ${AGUI_SOURCES})
endif()