No reliable way enforce DPOP in the browser - authentication

DPOP is a specification defines a mechanism to prevent illegal API calls from succeeding only with a stolen access token. More info here.
But it is a challenge to safely store the private/public key pairs needed to enforce DPOP in the browser. Browser storage options are:
LocalStorage/SessionSession storage
susceptible to XSS attacks if keys are stored in plain text
cannot store CryptoKey object which prevents extraction of private keys (LocalStorage only accepts strings)
IndexedDB
great option because it can store a CryptoKey object which safely houses private keys,
Not fully support by all main browsers (e.g. not support by Firefox/Edge incognito modes, WebView, Safari (iOS 14.8 and prior), Webworkers, etc.)
Any other options?

There are perhaps two big requirements here:
Preventing stolen access tokens being exploited
Preventing XSS vulnerabilities that can access data
BROWSER BASED APPS
The OAuth best practices for browser based apps are mostly focused on the second requirement.
DPoP can solve the first requirement but any mechanism to store the DPoP private key in the browser can be abused by XSS, and secrets etc revealed by browser tools. See also this video, which mentions DPoP in its discussion.
A backend for frontend and an application cookie layer is therefore the most mainstream solution. This also remains imperfect in the face of XSS. But stakeholders will perceive a cookie secured app, with threats and mitigations better understood, to be more secure than one using tokens + DPoP in Javascript.
MOBILE APPS
DPoP is a better choice in mobile apps, since devices can store keys securely, and injecting script into built binaries is not usually a concern. The attestation support in modern apps can potentially also be used to prove an app's identity, before the authorization server trusts a DPoP token from the client.

Related

Securing API key from reverse engineer in a React-Native app

I recently read a lot of post and article about securing sensitive info into a React Native app. From what I understand, you can't fully protect your sensitive info but only make hacker's life harder to get them.
So, from that point of view, I would like to know if it wouldn't be "safer" to get those sensitive info (i.e. API keys) from an external server (i.e. Rest API).
I explain:
I know about MitM attacks, but would it be safer (and more flexible) to have my mobile app calling my API to get API keys on request thru HTTPS? This way, no sensitive info remains in the app binary files.
And to secure MitM attacks, I could frequently change those API key values so they would remains valid only on a short period of time.
I would like to hear anyone about PROS and CONS of such a system.
APIs Misconceptions
To prepare you for my answer I will first clear out some usual misconceptions around public/private APIs and about who vs what is really accessing your backend.
Public and Private APIs
I often see that developers think that their APIs are private, because they have no docs for it, have not advertise it anywhere, and many other reasons.
The truth is that when you release a mobile app all the APIs it communicates with are now belonging to the public domain and if this APIs don't have an authentication and authorization mechanism in place then all data behind it can be accessed by anyone in the internet that reverse engineers how your mobile app works. Even when APIs have authentication in place they may be vulnerable to bad implementations of it and some have a total lack of authorization mechanisms or buggy ones as per OWASP API Security Top 10 vulnerability list.
The Difference Between WHO and WHAT is Accessing the API Server
I wrote a series of articles around API and Mobile security, and in the article Why Does Your Mobile App Need An Api Key? you can read in detail the difference between who and what is accessing your API server, but I will extract here the main takes from it:
The what is the thing making the request to the API server. Is it really a genuine instance of your mobile app, or is it a bot, an automated script or an attacker manually poking around your API server with a tool like Postman?
The who is the user of the mobile app that we can authenticate, authorize and identify in several ways, like using OpenID Connect or OAUTH2 flows.
So think about the who as the user your API server will be able to Authenticate and Authorize access to the data, and think about the what as the software making that request in behalf of the user.
API Keys Service
I know about MitM attacks, but would it be safer (and more flexible) to have my mobile app calling my API to get API keys on request thru HTTPS? This way, no sensitive info remains in the app binary files.
While you indeed don't have any sensitive info in the app binary files you haven't solved the problem. In my opinion you are more exposed, because you are now getting the API keys from an public and open API endpoint.
I say it's open because you don't have any safeguard that what is making the request to it are indeed a genuine and untampered version of your mobile app.
So, now all an attacker needs to do is to MitM attack your mobile app or decompile it to see from which API endpoint you grab the API keys to make the requests, and then replicate the procedure from their automated scripts/bots, therefore doesn't really matter that you don't have them hardcoded in the app binary any more.
API Keys Rotation
And to secure MitM attacks, I could frequently change those API key values so they would remains valid only on a short period of time.
In light of the above explanation , on the API Keys Service section, you can even make the API keys restricted to be used only for one single request that the attacker will still succeed, because the attacker will be able to query the API endpoint to obtain API keys as if he was what the backend expects, a genuine and untampered version of your mobile app.
So, to be clear I am in favour of API keys rotation but only if you can get them into your mobile app from a secured external source, but your approach is open to be accessed by anyone on the internet.
I would like to hear anyone about PROS and CONS of such a system.
The system you are describing is not advisable to implement, because without being secured it's just a security disaster asking to occur. Securing it with an API key it's just going back to the initial problem with the disadvantage that your giving back to the mobile the sensitive info you want to keep away from hackers.
The best approach for you is to use a Reverse Proxy to keep the API keys private and secured from prying eyes.
The Reverse Proxy Approach
So, from that point of view, I would like to know if it wouldn't be "safer" to get those sensitive info (i.e. API keys) from an external server (i.e. Rest API).
What you are looking for is to implement a Reverse Proxy, that is usually used to protect access to third party APIs and your own APIs, by having the mobile app delegating the API requests to the Reverse Proxy, instead of asking for the API keys to make them from inside the mobile app.
The Reverse Proxy approach will avoid to have several API keys harcoded in the mobile app, but you still need one API key to protect access to the Reverse Proxy, therefore you are still vulnerable to the MitM attacks and to static reverse engineering of your mobile app.
The advantage now is that all your sensitive API keys are private and in an environment you can control and employ as many security measures you need to ensure that the request are indeed from what your backend expects, a genuine and untampered version of your mobile app.
Learn more about using a Reverse Proxy by reading the article I wrote Using a Reverse Proxy to Protect Third Party APIs:
In this article you will start by learning what Third Party APIs are, and why you shouldn’t access them directly from within your mobile app. Next you will learn what a Reverse Proxy is, followed by when and why you should use it to protect the access to the Third Party APIs used in your mobile app.
While the article focus on third party APIs the principle also applies to use with your own APIs.
Preventing MitM Attacks
When certificate pinning is implemented in a mobile app to secure the https channel then the sensitive data on the API requests is more safeguarded from being extracted.
I recommend you to read the section Preventing MitM Attacks in this answer I gave to another question where you will learn how to implement static certificate pinning and how to bypass it.
Despite being possible to bypass certificate pinning I still strongly recommend it to be implemented, because it reduces the attack surface on your mobile app.
A Possible Better Solution
I recommend you to read this answer I gave to the question How to secure an API REST for mobile app?, especially the sections Hardening and Shielding the Mobile App, Securing the API Server and A Possible Better Solution.
The solution will be the use of a Mobile App Attestation solution that will allow your backend to have an high degree of confidence that the request is from what it expects, a genuine and untampered version of your mobile app.
Do You Want To Go The Extra Mile?
In any response to a security question I always like to reference the excellent work from the OWASP foundation.
For APIS
OWASP API Security Top 10
The OWASP API Security Project seeks to provide value to software developers and security assessors by underscoring the potential risks in insecure APIs, and illustrating how these risks may be mitigated. In order to facilitate this goal, the OWASP API Security Project will create and maintain a Top 10 API Security Risks document, as well as a documentation portal for best practices when creating or assessing APIs.
For Mobile Apps
OWASP Mobile Security Project - Top 10 risks
The OWASP Mobile Security Project is a centralized resource intended to give developers and security teams the resources they need to build and maintain secure mobile applications. Through the project, our goal is to classify mobile security risks and provide developmental controls to reduce their impact or likelihood of exploitation.
OWASP - Mobile Security Testing Guide:
The Mobile Security Testing Guide (MSTG) is a comprehensive manual for mobile app security development, testing and reverse engineering.

How do I trust an application to use my access token?

So I grant access of my resource to application A, and that application gets that access token. It is just a string. Sometimes the application will pass that access token to its backend server, and then use it to retrieve my resource. Usually the access token is valid for say one month.
Now my question is, what if application A leaks my access token, so any application B can use that access token to get my resource, which is not what I want. I only want application A can access my resource, not application B.
How do we trust application and give it my access token?
YOUR PROBLEM
Usually the access token is valid for say one month.
Using 1 month to the access token expiration time is way to long, not matter if is for admin or normal users.
Depending on your use case I recommend you to use the access tokens with an expiration time in the range of minute, lesser time you can have better will be for security.
So I would recommend you to switch to use refresh tokens, that will keep the access tokens short lived while refresh tokens can be long lived, but in the hours range, not days, weeks or years.
Refresh Token flow example:
Sourced from: Mobile API Security Techniques - part 2
NOTE: While the above graphic belongs to a series of articles written in the context of mobile APIs, they have a lot of information that is also valid for APIs serving web apps and third party clients.
By using the refresh tokens approach, when a client request fails to validate the short lived access token will mean that the client needs to request a new one by sending a refresh token in order to get a new short lived access token.
The important bit here is that the refresh token should not be sent to the browser, only the access token can be sent, therefore your third party clients must kept refresh tokens private, aka in their backends, therefore they MUST NOT send refresh tokens from javascript, instead any renewal of the short lived acess tokens MUST BE delegated to their backends.
Now my question is, what if application A leaks my access token, so any application B can use that access token to get my resource, which is not what I want.
That's why you should use the Refresh Tokens approach I mentioned earlier, because you limit their access to the amount of time remaining in the access token, and this is why I said that the short lived access tokens should be in the range of minutes.
I only want application A can access my resource, not application B.
I am gonna tell you a cruel truth... this is not doable at 100%, specially for web apps, where you can just hit F12 to access the developer tools console and search for the access token, or if you prefer to right click on the page and select view source.
Mobile apps seem to be more secure at a first glance, because they are shipped as a binary, thus you would expect to be hard to reverse engineer it? Wrong, it's indeed easy with the plethora of open source tools that we can use to reverse engineer them, and my preference goes to the MobSF:
Mobile Security Framework (MobSF) is an automated, all-in-one mobile application (Android/iOS/Windows) pen-testing, malware analysis and security assessment framework capable of performing static and dynamic analysis.
So if you cannot find the access tokens via static analysis, then you can resort to dynamic analysis with open source tools to, like Frida:
Inject your own scripts into black box processes. Hook any function, spy on crypto APIs or trace private application code, no source code needed. Edit, hit save, and instantly see the results. All without compilation steps or program restarts.
And if that's is not enough you also perform a Man in the Middle(MitM) Attack wit another open source tools, like mitmproxy:
An interactive TLS-capable intercepting HTTP proxy for penetration testers and software developers.
So, stealing your access token for a mobile app is not as easy as in the Web App, but it's not that hard to.
POSSIBLE SOLUTIONS
How do we trust application and give it my access token?
I don't know if your application is a web or mobile app, therefore I will show you possible solutions for both.
Before I mention the possible solutions, I need to first clear out a usual misconception among developers, regarding who vs what is accessing the backend. This is discussed in detail in this article, where we can read:
The what is the thing making the request to the API server. Is it really a genuine instance of your mobile app, or is it a bot, an automated script or an attacker manually poking around your API server with a tool like Postman?
The who is the user of the mobile app that we can authenticate, authorize and identify in several ways, like using OpenID Connect or OAUTH2 flows.
If you still have doubts please go and read the section of the linked article, that also includes a graphic to help with understanding this. The article is in the context of a mobile app, but for understanding the difference between what and who is accessing the backend, the references to mobile app can be replaced with web app.
For Web Apps
If your use case is a web app the most affordable solution to try to mitigate the who vs what is accessing your backend it's by using:
Google Recaptcha V3:
reCAPTCHA is a free service that protects your site from spam and abuse. It uses advanced risk analysis techniques to tell humans and bots apart.
This is uses User Behaviour Analytics(UBA) in a best effort basis to tell appart who and what is accessing your backend.
User behavior analytics (UBA) as defined by Gartner is a cybersecurity process about detection of insider threats, targeted attacks, and financial fraud. UBA solutions look at patterns of human behavior, and then apply algorithms and statistical analysis to detect meaningful anomalies from those patterns—anomalies that indicate potential threats.[1] Instead of tracking devices or security events, UBA tracks a system's users.
This is prone to false positives, therefore you need to be careful when deciding to accept or not the request based on the score returned by reCPATCHA V3 for each request:
reCAPTCHA v3 returns a score for each request without user friction. The score is based on interactions with your site and enables you to take an appropriate action for your site.
For Mobile Apps
As you saw by the plethora of tools available to reverse engineer the mobile apps, statically or dynamically, the access token to identify your user is not that safe, plus this only identifies the who in the request, not what is doing it.
The solution that can let your backend to be sure that the request is indeed from the same exact mobile app that was uploaded to the Google Play or Apple store is a Mobile App Attestation solution, that is a concept that introduces a new way of dealing with security for your mobile app and backend in an unified manner.
The usual approaches focus to much on the mobile app side, but in first place the data you want to protect is in your backend server, and it's here that you want to have a way to know that what is making the request is really the thinh you expect to be, your genuine mobile app.
The Mobile App Attestation concept is described in this section of another article I wrote, from where I will quote the following text:
The role of a Mobile App Attestation service is to authenticate what is sending the requests, thus only responding to requests coming from genuine mobile app instances and rejecting all other requests from unauthorized sources.
In order to know what is sending the requests to the API server, a Mobile App Attestation service, at run-time, will identify with high confidence that your mobile app is present, has not been tampered/repackaged, is not running in a rooted device, has not been hooked into by an instrumentation framework (Frida, xPosed, Cydia, etc.) and is not the object of a Man in the Middle Attack (MitM). This is achieved by running an SDK in the background that will communicate with a service running in the cloud to attest the integrity of the mobile app and device it is running on.
On a successful attestation of the mobile app integrity, a short time lived JWT token is issued and signed with a secret that only the API server and the Mobile App Attestation service in the cloud know. In the case that attestation fails the JWT token is signed with an incorrect secret. Since the secret used by the Mobile App Attestation service is not known by the mobile app, it is not possible to reverse engineer it at run-time even when the app has been tampered with, is running in a rooted device or communicating over a connection that is the target of a MitM attack.
The mobile app must send the JWT token in the header of every API request. This allows the API server to only serve requests when it can verify that the JWT token was signed with the shared secret and that it has not expired. All other requests will be refused. In other words a valid JWT token tells the API server that what is making the request is the genuine mobile app uploaded to the Google or Apple store, while an invalid or missing JWT token means that what is making the request is not authorized to do so, because it may be a bot, a repackaged app or an attacker making a MitM attack.
So this approach will let your backend server to trust with a very high degree of confidence that the request is coming indeed from the same exact mobile app you uploaded to the Google Play and Apple store, provided the JWT token has a valid signature and expire time, and discard all other requests as untrustworthy ones.
GOING THE EXTRA MILE
To finish my answer I cannot resist to recommend you the excellent work of the OWASP foundation, because off their excellent work and for me no security solution for web and mobile is complete without going through their guides:
The Web Security Testing Guide:
The OWASP Web Security Testing Guide includes a "best practice" penetration testing framework which users can implement in their own organizations and a "low level" penetration testing guide that describes techniques for testing most common web application and web service security issues.
The Mobile Security Testing Guide:
The Mobile Security Testing Guide (MSTG) is a comprehensive manual for mobile app security development, testing and reverse engineering.

Storing api keys

I am using the Goodreads api to get book data for my react native app. I have to use a key for using the api. Is it OK for me to store the api key on the app itself or should I put the key on a server that redirects all the data to the app?
Is it OK for me to store the api key on the app itself
No, because as I demonstrate in the article How to Extract an API Key from a Mobile App by Static binary analysis it can be extracted with the help of several open source tools, like by using the Mobile Security Framework, but you can also grab the API key with a MitM attack, as I show in the article Steal that API Key with a Man in the Middle Attack, that uses the open source tool MiTM Proxy.
If you leave a third party API key in the mobile app, then they are up for grabs from attackers, and when they start using it without your knowledge your bill in the third party provider may go through the roof before you acknowledge that something is wrong, and on that time the only solution is to revoke the API key, thus shutting down the use of the mobile app, and if you make a new release of your mobile app with a new API key it will be just a matter of hours until the attacker come back and steal the API key again.
or should I put the key on a server that redirects all the data to the app?
Yes, and this is a good approach, because now you have only one place to store and protect all third part API keys. This have the benefit to let you control and throttle the use of them as you see fit.
With this solution you still need an API key in your mobile app to allow access to your API server, but while you continue vulnerable for attackers to steal it, you are now in direct control of throttling the access to your API server and if you identify in each access the WHO and the WHAT is accessing the API server, then you have a more fine grade control, but attacker will continue to be able to slip between all our defenses, because is very hard to know WHAT is accessing the API server.
You may be thinking by now... do you mind to explain the WHO vs the WHAT?
The Difference Between WHO and WHAT is Accessing the API Server
To better understand the differences between the WHO and the WHAT are accessing an API server, let’s use this picture:
The Intended Communication Channel represents the mobile app being used as you expected, by a legit user without any malicious intentions, using an untampered version of the mobile app, and communicating directly with the API server without being man in the middle attacked.
The actual channel may represent several different scenarios, like a legit user with malicious intentions that may be using a repackaged version of the mobile app, a hacker using the genuine version of the mobile app, while man in the middle attacking it, to understand how the communication between the mobile app and the API server is being done in order to be able to automate attacks against your API. Many other scenarios are possible, but we will not enumerate each one here.
I hope that by now you may already have a clue why the WHO and the WHAT are not the same, but if not it will become clear in a moment.
The WHO is the user of the mobile app that we can authenticate, authorize and identify in several ways, like using OpenID Connect or OAUTH2 flows.
OAUTH
Generally, OAuth provides to clients a "secure delegated access" to server resources on behalf of a resource owner. It specifies a process for resource owners to authorize third-party access to their server resources without sharing their credentials. Designed specifically to work with Hypertext Transfer Protocol (HTTP), OAuth essentially allows access tokens to be issued to third-party clients by an authorization server, with the approval of the resource owner. The third party then uses the access token to access the protected resources hosted by the resource server.
OpenID Connect
OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol. It allows Clients to verify the identity of the End-User based on the authentication performed by an Authorization Server, as well as to obtain basic profile information about the End-User in an interoperable and REST-like manner.
While user authentication may let the API server know WHO is using the API, it cannot guarantee that the requests have originated from WHAT you expect, the original version of the mobile app.
Now we need a way to identify WHAT is calling the API server, and here things become more tricky than most developers may think. The WHAT is the thing making the request to the API server. Is it really a genuine instance of the mobile app, or is a bot, an automated script or an attacker manually poking around with the API server, using a tool like Postman?
For your surprise you may end up discovering that It can be one of the legit users using a repackaged version of the mobile app or an automated script that is trying to gamify and take advantage of the service provided by the application.
Well, to identify the WHAT, developers tend to resort to an API key that usually they hard-code in the code of their mobile app. Some developers go the extra mile and compute the key at run-time in the mobile app, thus it becomes a runtime secret as opposed to the former approach when a static secret is embedded in the code.
The above write-up was extracted from an article I wrote, entitled WHY DOES YOUR MOBILE APP NEED AN API KEY?, and that you can read in full here, that is the first article in a series of articles about API keys.
Your problem is not solved yet
Now that you know the difference between WHO and WHAT is accessing your API server you must have realized that your API server is still vulnerable to be abused by attackers.
You can resort now to employ several layers of defense, starting with reCaptcha V3, followed by Web Application Firewall(WAF) and finally if you can afford it a User Behavior Analytics(UBA) solution.
Google reCAPTCHA V3:
reCAPTCHA is a free service that protects your website from spam and abuse. reCAPTCHA uses an advanced risk analysis engine and adaptive challenges to keep automated software from engaging in abusive activities on your site. It does this while letting your valid users pass through with ease.
...helps you detect abusive traffic on your website without any user friction. It returns a score based on the interactions with your website and provides you more flexibility to take appropriate actions.
WAF - Web Application Firewall:
A web application firewall (or WAF) filters, monitors, and blocks HTTP traffic to and from a web application. A WAF is differentiated from a regular firewall in that a WAF is able to filter the content of specific web applications while regular firewalls serve as a safety gate between servers. By inspecting HTTP traffic, it can prevent attacks stemming from web application security flaws, such as SQL injection, cross-site scripting (XSS), file inclusion, and security misconfigurations.
UBA - User Behavior Analytics:
User behavior analytics (UBA) as defined by Gartner is a cybersecurity process about detection of insider threats, targeted attacks, and financial fraud. UBA solutions look at patterns of human behavior, and then apply algorithms and statistical analysis to detect meaningful anomalies from those patterns—anomalies that indicate potential threats. Instead of tracking devices or security events, UBA tracks a system's users. Big data platforms like Apache Hadoop are increasing UBA functionality by allowing them to analyze petabytes worth of data to detect insider threats and advanced persistent threats.
All this solutions work based on a negative identification model, by other words they try their best to differentiate the bad from the good by identifying what is bad, not what is good, thus they are prone to false positives, despite of the advanced technology used by some of them, like machine learning and artificial intelligence.
So you may find yourself more often than not in having to relax how you block the access to the API server in order to not affect the good users. This also means that this solutions require constant monitoring to validate that the false positives are not blocking your legit users and that at same time they are properly keeping at bay the unauthorized ones.
Regarding APIs serving mobile apps a positive identification model can be used by using a Mobile App Attestation solution that guarantees to the API server that the requests can be trusted without the possibility of false positives.
Mobile App Attestation
Use a Mobile App Attestation solution to enable the API server to know is receiving only requests from a genuine mobile app.
The role of a Mobile App Attestation service is to guarantee at run-time that your mobile app was not tampered or is not running in a rooted device by running a SDK in the background that will communicate with a service running in the cloud to attest the integrity of the mobile app and device is running on.
On successful attestation of the mobile app integrity a short time lived JWT token is issued and signed with a secret that only the API server and the Mobile App Attestation service in the cloud are aware. In the case of failure on the mobile app attestation the JWT token is signed with a secret that the API server does not know.
Now the App must sent with every API call the JWT token in the headers of the request. This will allow the API server to only serve requests when it can verify the signature and expiration time in the JWT token and refuse them when it fails the verification.
Once the secret used by the Mobile App Attestation service is not known by the mobile app, is not possible to reverse engineer it at run-time even when the App is tampered, running in a rooted device or communicating over a connection that is being the target of a Man in the Middle Attack.
The Mobile App Attestation service already exists as a SAAS solution at Approov(I work here) that provides SDKs for several platforms, including iOS, Android, React Native and others. The integration will also need a small check in the API server code to verify the JWT token issued by the cloud service. This check is necessary for the API server to be able to decide what requests to serve and what ones to deny.
Summary
Anything that runs on the client side and needs some secret to access an API can be abused in different ways and you must delegate the access to all third part APIs to a backend under your control, so that you reduce the attack surface, and at the same time protect their secrets from public pry eyes.
In the end, the solution to use in order to protect your API server must be chosen in accordance with the value of what you are trying to protect and the legal requirements for that type of data, like the GDPR regulations in Europe.
For react native use react-native-config library. While using this library you can secure your api keys as well as you can save more secret keys which use in the native code. Like we can save onesignal, codepush etc keys.
https://github.com/luggit/react-native-config
Store them in a .env file like this API_KEY=yourKey.
Install npm package react-native-dotenv.
Then import to to files as needed with react-native-dotenv package;
import { API_KEY } from 'react-native-dotenv'
The .env file should never be committed to Github.

Need to generate API key for different application

I have developed API in dot net. This API is consumed by different application. I have to generate a different key for each application which is consumed by this API. Can anyone please share their Ideas. This is first time i am doing such tasks.
Your Problem
I have developed API in dot net. This API is consumed by different application. I have to generate a different key for each application which is consumed by this API.
When creating an API, no matter if consumed by one or more applications you need to deal with the fact of WHAT is accessing the API and sometimes you also need to care about WHO is accessing it.
With this in mind lets clear a common misconception among developers about WHO and WHAT is accessing an API server.
The Difference Between WHO and WHAT is Accessing the API Server
I don't know if the applications consuming the API are mobile or web based, but I will do my analogy using a mobile application, and for a web application the difference between WHO and WHAT will make no difference.
To better understand the differences between the WHO and the WHAT are accessing a mobile app, let’s use this picture:
The Intended Communication Channel represents the mobile app being used as you expected, by a legit user without any malicious intentions, using an untampered version of the mobile app, and communicating directly with the API server without being man in the middle attacked.
The actual channel may represent several different scenarios, like a legit user with malicious intentions that may be using a repackaged version of the mobile app, a hacker using the genuine version of the mobile app, while man in the middle attacking it, to understand how the communication between the mobile app and the API server is being done in order to be able to automate attacks against your API. Many other scenarios are possible, but we will not enumerate each one here.
I hope that by now you may already have a clue why the WHO and the WHAT are not the same, but if not it will become clear in a moment.
The WHO is the user of the mobile app that we can authenticate, authorize and identify in several ways, like using OpenID Connect or OAUTH2 flows.
OAUTH
Generally, OAuth provides to clients a "secure delegated access" to server resources on behalf of a resource owner. It specifies a process for resource owners to authorize third-party access to their server resources without sharing their credentials. Designed specifically to work with Hypertext Transfer Protocol (HTTP), OAuth essentially allows access tokens to be issued to third-party clients by an authorization server, with the approval of the resource owner. The third party then uses the access token to access the protected resources hosted by the resource server.
OpenID Connect
OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol. It allows Clients to verify the identity of the End-User based on the authentication performed by an Authorization Server, as well as to obtain basic profile information about the End-User in an interoperable and REST-like manner.
While user authentication may let the API server know WHO is using the API, it cannot guarantee that the requests have originated from WHAT you expect, the original version of the mobile app.
Now we need a way to identify WHAT is calling the API server, and here things become more tricky than most developers may think. The WHAT is the thing making the request to the API server. Is it really a genuine instance of the mobile app, or is a bot, an automated script or an attacker manually poking around with the API server, using a tool like Postman?
For your surprise you may end up discovering that It can be one of the legit users using a repackaged version of the mobile app or an automated script that is trying to gamify and take advantage of the service provided by the application.
Well, to identify the WHAT, developers tend to resort to an API key that usually they hard-code in the code of their mobile app. Some developers go the extra mile and compute the key at run-time in the mobile app, thus it becomes a runtime secret as opposed to the former approach when a static secret is embedded in the code.
The above write-up was extracted from an article I wrote, entitled WHY DOES YOUR MOBILE APP NEED AN API KEY?, and that you can read in full here, that is the first article in a series of articles about API keys.
Defending an API Server
Can anyone please share their Ideas.
A mobile app or a web app should only communicate with a API server that is under your control and any access to third part APIs services must be done by this same API server you control.
This way you limit the attack surface to only one place, where you will employ as many layers of defense as what you are protecting is worth.
For an API serving a web app you can employ several layers of dense, starting with reCaptcha V3, followed by Web Application Firewall(WAF) and finally if you can afford it a User Behavior Analytics(UBA) solution.
Google reCAPTCHA V3:
reCAPTCHA is a free service that protects your website from spam and abuse. reCAPTCHA uses an advanced risk analysis engine and adaptive challenges to keep automated software from engaging in abusive activities on your site. It does this while letting your valid users pass through with ease.
...helps you detect abusive traffic on your website without any user friction. It returns a score based on the interactions with your website and provides you more flexibility to take appropriate actions.
WAF - Web Application Firewall:
A web application firewall (or WAF) filters, monitors, and blocks HTTP traffic to and from a web application. A WAF is differentiated from a regular firewall in that a WAF is able to filter the content of specific web applications while regular firewalls serve as a safety gate between servers. By inspecting HTTP traffic, it can prevent attacks stemming from web application security flaws, such as SQL injection, cross-site scripting (XSS), file inclusion, and security misconfigurations.
UBA - User Behavior Analytics:
User behavior analytics (UBA) as defined by Gartner is a cybersecurity process about detection of insider threats, targeted attacks, and financial fraud. UBA solutions look at patterns of human behavior, and then apply algorithms and statistical analysis to detect meaningful anomalies from those patterns—anomalies that indicate potential threats. Instead of tracking devices or security events, UBA tracks a system's users. Big data platforms like Apache Hadoop are increasing UBA functionality by allowing them to analyze petabytes worth of data to detect insider threats and advanced persistent threats.
All this solutions work based on a negative identification model, by other words they try their best to differentiate the bad from the good by identifying what is bad, not what is good, thus they are prone to false positives, despite of the advanced technology used by some of them, like machine learning and artificial intelligence.
So you may find yourself more often than not in having to relax how you block the access to the API server in order to not affect the good users. This also means that this solutions require constant monitoring to validate that the false positives are not blocking your legit users and that at same time they are properly keeping at bay the unauthorized ones.
Regarding APIs serving mobile apps a positive identification model can be used by using a Mobile App Attestation solution that guarantees to the API server that the requests can be trusted without the possibility of false positives.
The Mobile App Attestation
The role of a Mobile App Attestation service is to guarantee at run-time that your mobile app was not tampered or is not running in a rooted device by running a SDK in the background that will communicate with a service running in the cloud to attest the integrity of the mobile app and device is running on.
On successful attestation of the mobile app integrity a short time lived JWT token is issued and signed with a secret that only the API server and the Mobile App Attestation service in the cloud are aware. In the case of failure on the mobile app attestation the JWT token is signed with a secret that the API server does not know.
Now the App must sent with every API call the JWT token in the headers of the request. This will allow the API server to only serve requests when it can verify the signature and expiration time in the JWT token and refuse them when it fails the verification.
Once the secret used by the Mobile App Attestation service is not known by the mobile app, is not possible to reverse engineer it at run-time even when the App is tampered, running in a rooted device or communicating over a connection that is being the target of a Man in the Middle Attack.
The Mobile App Attestation service already exists as a SAAS solution at Approov(I work here) that provides SDKs for several platforms, including iOS, Android, React Native and others. The integration will also need a small check in the API server code to verify the JWT token issued by the cloud service. This check is necessary for the API server to be able to decide what requests to serve and what ones to deny.
Summary
I think it should be pretty clear by now that you will need to use an API key for each application to identify the WHAT, and if you care about the WHO you should employ an OAUTH solution to, and then choose what defense layers you want to put in place on the API server to guarantee that you really know that the WHAT and the WHO is accessing the API server are really the ones you expect.
In the end the solution to use in order to protect your API server must be chosen in accordance with the value of what you are trying to protect and the legal requirements for that type of data, like the GDPR regulations in Europe.
So using API keys may sound like locking the door of your home and leave the key under the mat, but not using them is liking leaving your car parked with the door closed, but the key in the ignition.
Going the Extra Mile
This is first time i am doing such tasks.
So I real recommend you to read some links...
Web Apps
OWASP Web Top 10 Risks
The OWASP Top 10 is a powerful awareness document for web application security. It represents a broad consensus about the most critical security risks to web applications. Project members include a variety of security experts from around the world who have shared their expertise to produce this list.
Mobile Apps
OWASP Mobile Security Project - Top 10 risks
The OWASP Mobile Security Project is a centralized resource intended to give developers and security teams the resources they need to build and maintain secure mobile applications. Through the project, our goal is to classify mobile security risks and provide developmental controls to reduce their impact or likelihood of exploitation.

Don't want to store the secret Facebook/Twitter API key on mobile devices, design patterns?

I have an issue with letting my secret API key be all over the world on potentially thousands of mobile devices. It could easily be compromised and used for malicious purposes by a hacker.
So what are the options for me?
I would guess a private server which has the secret API key and a web service that encapsulates all method calls. So instead of the mobile device having the secret key and does something like:
List<Friends> = service.GetFriends(secretKey);
If my secret API key is compromised and is used for spamming/abuse purposes, I must shut down the use for all my users, leaving my application dead in the sea.
So my idea is that I can use the mobile device unique device ID and do:
List<Friends> = myService.GetFriends(deviceID);
Of course, a malicious hacker could just call my web service with a fake deviceID, but at least I now have control to blacklist deviceID's. It also introduces some potential bandwidth isssue, but that is of a less concern.
A true PKI is probably out of the question, since the targetted device doesn't handle HTTP client certificates in the current version.
Any other good ideas?
You don't want to publish your API key to Facebook or Twitter, even obfuscated within a client.
Your instincts are correct to proxy through a service you control. Limiting access to that service is up to you - how much risk is unauthorized use? Device ID is a pretty good clue to device/user identity, but can be faked.
There are stronger authentication methods you could use (SMS auth, etc) to establish a long-term session or device key, however these are more complex and impose a higher burden on the end user.
TL;DR
Protect your platform API keys. Secure your own API enough to protect your needs.