Why there is "1 related problem" on public class WelcomeMessageListener implements Listener [duplicate] - minecraft

Please explain the following about "Cannot find symbol", "Cannot resolve symbol" or "Symbol not found" errors (in Java):
What do they mean?
What things can cause them?
How does the programmer go about fixing them?
This question is designed to seed a comprehensive Q&A about these common compilation errors in Java.

0. Is there any difference between these errors?
Not really. "Cannot find symbol", "Cannot resolve symbol" and "Symbol not found" all mean the same thing. (Different Java compilers are written by different people, and different people use different phraseology to say the same thing.)
1. What does a "Cannot find symbol" error mean?
Firstly, it is a compilation error1. It means that either there is a problem in your Java source code, or there is a problem in the way that you are compiling it.
Your Java source code consists of the following things:
Keywords: like class, while, and so on.
Literals: like true, false, 42, 'X' and "Hi mum!".
Operators and other non-alphanumeric tokens: like +, =, {, and so on.
Identifiers: like Reader, i, toString, processEquibalancedElephants, and so on.
Comments and whitespace.
A "Cannot find symbol" error is about the identifiers. When your code is compiled, the compiler needs to work out what each and every identifier in your code means.
A "Cannot find symbol" error means that the compiler cannot do this. Your code appears to be referring to something that the compiler doesn't understand.
2. What can cause a "Cannot find symbol" error?
As a first order, there is only one cause. The compiler looked in all of the places where the identifier should be defined, and it couldn't find the definition. This could be caused by a number of things. The common ones are as follows:
For identifiers in general:
Perhaps you spelled the name incorrectly; i.e. StringBiulder instead of StringBuilder. Java cannot and will not attempt to compensate for bad spelling or typing errors.
Perhaps you got the case wrong; i.e. stringBuilder instead of StringBuilder. All Java identifiers are case sensitive.
Perhaps you used underscores inappropriately; i.e. mystring and my_string are different. (If you stick to the Java style rules, you will be largely protected from this mistake ...)
Perhaps you are trying to use something that was declared "somewhere else"; i.e. in a different context to where you have implicitly told the compiler to look. (A different class? A different scope? A different package? A different code-base?)
For identifiers that should refer to variables:
Perhaps you forgot to declare the variable.
Perhaps the variable declaration is out of scope at the point you tried to use it. (See example below)
For identifiers that should be method or field names:
Perhaps you are trying to refer to an inherited method or field that wasn't declared in the parent / ancestor classes or interfaces.
Perhaps you are trying to refer to a method or field that does not exist (i.e. has not been declared) in the type you are using; e.g. "rope".push()2.
Perhaps you are trying to use a method as a field, or vice versa; e.g. "rope".length or someArray.length().
Perhaps you are mistakenly operating on an array rather than array element; e.g.
String strings[] = ...
if (strings.charAt(3)) { ... }
// maybe that should be 'strings[0].charAt(3)'
For identifiers that should be class names:
Perhaps you forgot to import the class.
Perhaps you used "star" imports, but the class isn't defined in any of the packages that you imported.
Perhaps you forgot a new as in:
String s = String(); // should be 'new String()'
Perhaps you are trying to import or otherwise use a class that has been declared in the default package; i.e. the one where classes with no package statements go.
Hint: learn about packages. You should only use the default package for simple applications that consist of one class ... or at a stretch, one Java source file.
For cases where type or instance doesn't appear to have the member (e.g. method or field) you were expecting it to have:
Perhaps you have declared a nested class or a generic parameter that shadows the type you were meaning to use.
Perhaps you are shadowing a static or instance variable.
Perhaps you imported the wrong type; e.g. due to IDE completion or auto-correction may have suggested java.awt.List rather than java.util.List.
Perhaps you are using (compiling against) the wrong version of an API.
Perhaps you forgot to cast your object to an appropriate subclass.
Perhaps you have declared the variable's type to be a supertype of the one with the member you are looking for.
The problem is often a combination of the above. For example, maybe you "star" imported java.io.* and then tried to use the Files class ... which is in java.nio not java.io. Or maybe you meant to write File ... which is a class in java.io.
Here is an example of how incorrect variable scoping can lead to a "Cannot find symbol" error:
List<String> strings = ...
for (int i = 0; i < strings.size(); i++) {
if (strings.get(i).equalsIgnoreCase("fnord")) {
break;
}
}
if (i < strings.size()) {
...
}
This will give a "Cannot find symbol" error for i in the if statement. Though we previously declared i, that declaration is only in scope for the for statement and its body. The reference to i in the if statement cannot see that declaration of i. It is out of scope.
(An appropriate correction here might be to move the if statement inside the loop, or to declare i before the start of the loop.)
Here is an example that causes puzzlement where a typo leads to a seemingly inexplicable "Cannot find symbol" error:
for (int i = 0; i < 100; i++); {
System.out.println("i is " + i);
}
This will give you a compilation error in the println call saying that i cannot be found. But (I hear you say) I did declare it!
The problem is the sneaky semicolon ( ; ) before the {. The Java language syntax defines a semicolon in that context to be an empty statement. The empty statement then becomes the body of the for loop. So that code actually means this:
for (int i = 0; i < 100; i++);
// The previous and following are separate statements!!
{
System.out.println("i is " + i);
}
The { ... } block is NOT the body of the for loop, and therefore the previous declaration of i in the for statement is out of scope in the block.
Here is another example of "Cannot find symbol" error that is caused by a typo.
int tmp = ...
int res = tmp(a + b);
Despite the previous declaration, the tmp in the tmp(...) expression is erroneous. The compiler will look for a method called tmp, and won't find one. The previously declared tmp is in the namespace for variables, not the namespace for methods.
In the example I came across, the programmer had actually left out an operator. What he meant to write was this:
int res = tmp * (a + b);
There is another reason why the compiler might not find a symbol if you are compiling from the command line. You might simply have forgotten to compile or recompile some other class. For example, if you have classes Foo and Bar where Foo uses Bar. If you have never compiled Bar and you run javac Foo.java, you are liable to find that the compiler can't find the symbol Bar. The simple answer is to compile Foo and Bar together; e.g. javac Foo.java Bar.java or javac *.java. Or better still use a Java build tool; e.g. Ant, Maven, Gradle and so on.
There are some other more obscure causes too ... which I will deal with below.
3. How do I fix these errors ?
Generally speaking, you start out by figuring out what caused the compilation error.
Look at the line in the file indicated by the compilation error message.
Identify which symbol that the error message is talking about.
Figure out why the compiler is saying that it cannot find the symbol; see above!
Then you think about what your code is supposed to be saying. Then finally you work out what correction you need to make to your source code to do what you want.
Note that not every "correction" is correct. Consider this:
for (int i = 1; i < 10; i++) {
for (j = 1; j < 10; j++) {
...
}
}
Suppose that the compiler says "Cannot find symbol" for j. There are many ways I could "fix" that:
I could change the inner for to for (int j = 1; j < 10; j++) - probably correct.
I could add a declaration for j before the inner for loop, or the outer for loop - possibly correct.
I could change j to i in the inner for loop - probably wrong!
and so on.
The point is that you need to understand what your code is trying to do in order to find the right fix.
4. Obscure causes
Here are a couple of cases where the "Cannot find symbol" is seemingly inexplicable ... until you look closer.
Incorrect dependencies: If you are using an IDE or a build tool that manages the build path and project dependencies, you may have made a mistake with the dependencies; e.g. left out a dependency, or selected the wrong version. If you are using a build tool (Ant, Maven, Gradle, etc), check the project's build file. If you are using an IDE, check the project's build path configuration.
Cannot find symbol 'var': You are probably trying to compile source code that uses local variable type inference (i.e. a var declaration) with an older compiler or older --source level. The var was introduced in Java 10. Check your JDK version and your build files, and (if this occurs in an IDE), the IDE settings.
You are not compiling / recompiling: It sometimes happens that new Java programmers don't understand how the Java tool chain works, or haven't implemented a repeatable "build process"; e.g. using an IDE, Ant, Maven, Gradle and so on. In such a situation, the programmer can end up chasing his tail looking for an illusory error that is actually caused by not recompiling the code properly, and the like.
Another example of this is when you use (Java 9+) java SomeClass.java to compile and run a class. If the class depends on another class that you haven't compiled (or recompiled), you are liable to get "Cannot resolve symbol" errors referring to the 2nd class. The other source file(s) are not automatically compiled. The java command's new "compile and run" mode is not designed for running programs with multiple source code files.
An earlier build problem: It is possible that an earlier build failed in a way that gave a JAR file with missing classes. Such a failure would typically be noticed if you were using a build tool. However if you are getting JAR files from someone else, you are dependent on them building properly, and noticing errors. If you suspect this, use tar -tvf to list the contents of the suspect JAR file.
IDE issues: People have reported cases where their IDE gets confused and the compiler in the IDE cannot find a class that exists ... or the reverse situation.
This could happen if the IDE has been configured with the wrong JDK version.
This could happen if the IDE's caches get out of sync with the file system. There are IDE specific ways to fix that.
This could be an IDE bug. For instance #Joel Costigliola described a scenario where Eclipse did not handle a Maven "test" tree correctly: see this answer. (Apparently that particular bug was been fixed a long time ago.)
Android issues: When you are programming for Android, and you have "Cannot find symbol" errors related to R, be aware that the R symbols are defined by the context.xml file. Check that your context.xml file is correct and in the correct place, and that the corresponding R class file has been generated / compiled. Note that the Java symbols are case sensitive, so the corresponding XML ids are be case sensitive too.
Other symbol errors on Android are likely to be due to previously mention reasons; e.g. missing or incorrect dependencies, incorrect package names, method or fields that don't exist in a particular API version, spelling / typing errors, and so on.
Hiding system classes: I've seen cases where the compiler complains that substring is an unknown symbol in something like the following
String s = ...
String s1 = s.substring(1);
It turned out that the programmer had created their own version of String and that his version of the class didn't define a substring methods. I've seen people do this with System, Scanner and other classes.
Lesson: Don't define your own classes with the same names as common library classes!
The problem can also be solved by using the fully qualified names. For example, in the example above, the programmer could have written:
java.lang.String s = ...
java.lang.String s1 = s.substring(1);
Homoglyphs: If you use UTF-8 encoding for your source files, it is possible to have identifiers that look the same, but are in fact different because they contain homoglyphs. See this page for more information.
You can avoid this by restricting yourself to ASCII or Latin-1 as the source file encoding, and using Java \uxxxx escapes for other characters.
1 - If, perchance, you do see this in a runtime exception or error message, then either you have configured your IDE to run code with compilation errors, or your application is generating and compiling code .. at runtime.
2 - The three basic principles of Civil Engineering: water doesn't flow uphill, a plank is stronger on its side, and you can't push on a rope.

You'll also get this error if you forget a new:
String s = String();
versus
String s = new String();
because the call without the new keyword will try and look for a (local) method called String without arguments - and that method signature is likely not defined.

One more example of 'Variable is out of scope'
As I've seen that kind of questions a few times already, maybe one more example to what's illegal even if it might feel okay.
Consider this code:
if(somethingIsTrue()) {
String message = "Everything is fine";
} else {
String message = "We have an error";
}
System.out.println(message);
That's invalid code. Because neither of the variables named message is visible outside of their respective scope - which would be the surrounding brackets {} in this case.
You might say: "But a variable named message is defined either way - so message is defined after the if".
But you'd be wrong.
Java has no free() or delete operators, so it has to rely on tracking variable scope to find out when variables are no longer used (together with references to these variables of cause).
It's especially bad if you thought you did something good. I've seen this kind of error after "optimizing" code like this:
if(somethingIsTrue()) {
String message = "Everything is fine";
System.out.println(message);
} else {
String message = "We have an error";
System.out.println(message);
}
"Oh, there's duplicated code, let's pull that common line out" -> and there it it.
The most common way to deal with this kind of scope-trouble would be to pre-assign the else-values to the variable names in the outside scope and then reassign in if:
String message = "We have an error";
if(somethingIsTrue()) {
message = "Everything is fine";
}
System.out.println(message);

SOLVED
Using IntelliJ
Select Build->Rebuild Project will solve it

One way to get this error in Eclipse :
Define a class A in src/test/java.
Define another class B in src/main/java that uses class A.
Result : Eclipse will compile the code, but maven will give "Cannot find symbol".
Underlying cause : Eclipse is using a combined build path for the main and test trees. Unfortunately, it does not support using different build paths for different parts of an Eclipse project, which is what Maven requires.
Solution :
Don't define your dependencies that way; i.e. don't make this mistake.
Regularly build your codebase using Maven so that you pick up this mistake early. One way to do that is to use a CI server.

"Can not find " means that , compiler who can't find appropriate variable, method ,class etc...if you got that error massage , first of all you want to find code line where get error massage..And then you will able to find which variable , method or class have not define before using it.After confirmation initialize that variable ,method or class can be used for later require...Consider the following example.
I'll create a demo class and print a name...
class demo{
public static void main(String a[]){
System.out.print(name);
}
}
Now look at the result..
That error says, "variable name can not find"..Defining and initializing value for 'name' variable can be abolished that error..Actually like this,
class demo{
public static void main(String a[]){
String name="smith";
System.out.print(name);
}
}
Now look at the new output...
Ok Successfully solved that error..At the same time , if you could get "can not find method " or "can not find class" something , At first,define a class or method and after use that..

If you're getting this error in the build somewhere else, while your IDE says everything is perfectly fine, then check that you are using the same Java versions in both places.
For example, Java 7 and Java 8 have different APIs, so calling a non-existent API in an older Java version would cause this error.

There can be various scenarios as people have mentioned above. A couple of things which have helped me resolve this.
If you are using IntelliJ
File -> 'Invalidate Caches/Restart'
OR
The class being referenced was in another project and that dependency was not added to the Gradle build file of my project. So I added the dependency using
compile project(':anotherProject')
and it worked. HTH!

If eclipse Java build path is mapped to 7, 8 and in Project pom.xml Maven properties java.version is mentioned higher Java version(9,10,11, etc..,) than 7,8 you need to update in pom.xml file.
In Eclipse if Java is mapped to Java version 11 and in pom.xml it is mapped to Java version 8. Update Eclipse support to Java 11 by go through below steps in eclipse IDE
Help -> Install New Software ->
Paste following link http://download.eclipse.org/eclipse/updates/4.9-P-builds at Work With
or
Add (Popup window will open) ->
Name: Java 11 support
Location: http://download.eclipse.org/eclipse/updates/4.9-P-builds
then update Java version in Maven properties of pom.xml file as below
<java.version>11</java.version>
<maven.compiler.source>${java.version}</maven.compiler.source>
<maven.compiler.target>${java.version}</maven.compiler.target>
Finally do right click on project Debug as -> Maven clean, Maven build steps

I too was getting this error. (for which I googled and I was directed to this page)
Problem: I was calling a static method defined in the class of a project A from a class defined in another project B.
I was getting the following error:
error: cannot find symbol
Solution: I resolved this by first building the project where the method is defined then the project where the method was being called from.

you compiled your code using maven compile and then used maven test to run it worked fine. Now if you changed something in your code and then without compiling you are running it, you will get this error.
Solution: Again compile it and then run test. For me it worked this way.

In my case - I had to perform below operations:
Move context.xml file from src/java/package to the resource directory (IntelliJ
IDE)
Clean target directory.

For hints, look closer at the class name name that throws an error and the line number, example:
Compilation failure
[ERROR] \applications\xxxxx.java:[44,30] error: cannot find symbol
One other cause is unsupported method of for java version say jdk7 vs 8.
Check your %JAVA_HOME%

We got the error in a Java project that is set up as a Gradle multi-project build. It turned out that one of the sub-projects was missing the Gradle Java Library plugin.
This prevented the sub-project's class files from being visible to other projects in the build.
After adding the Java library plugin to the sub-project's build.gradle in the following way, the error went away:
plugins {
...
id 'java-library'
}

Re: 4.4: An earlier build problem in Stephen C's excellent answer:
I encountered this scenario when developing an osgi application.
I had a java project A that was a dependency of B.
When building B, there was the error:
Compilation failure: org.company.projectA.bar.xyz does not exist
But in eclipse, there was no compile problem at all.
Investigation
When i looked in A.jar, there were classes for org.company.projectA.foo.abc but none for org.company.projectA.bar.xyz.
The reason for the missing classes, was that in the A/pom.xml, was an entry to export the relevant packages.
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
...
<configuration>
<instructions>
....
<Export-Package>org.company.projectA.foo.*</Export-Package>
</instructions>
</configuration>
</plugin>
Solution
Add the missing packages like so:
<Export-Package>org.company.projectA.foo.*,org.company.projectA.bar.*</Export-Package>
and rebuild everything.
Now the A.jar includes all the expected classes, and everything compiles.

I was getting below error
java: cannot find symbol
symbol: class __
To fix this
I tried enabling lambok, restarted intellij, etc but below worked for me.
Intellij Preferences ->Compiler -> Shared Build process VM Options and set it to
-Djps.track.ap.dependencies=false
than run
mvn clean install

Optional.isEmpty()
I was happily using !Optional.isEmpty() in my IDE, and it works fine, as i was compiling/running my project with >= JDK11. Now, when i use Gradle on the command line (running on JDK8), i got the nasty error in the compile task.
Why?
From the docs (Pay attention to the last line):
boolean java.util.Optional.isEmpty()
If a value is not present, returns true, otherwise false.
Returns:true if a value is not present, otherwise false
Since:11

I solved this error like this... The craziness of android. I had the package name as Adapter and the I refactor the name to adapter with an "a" instead of "A" and solved the error.

Related

Clion IDE, Whenever i create new file gives error [duplicate]

In the journey to learning C++ im learning through the C++ Manual thats on the actual website. Im using DevC++ and have hit a problem, not knowing whether its the compilers error or not.
I was going through this code bit by bit typing it in myself, as I feel its more productive, and adding my own stuff that ive learnt to the examples, then I get to initialising variables. This is the code that is in the C++ manual
#include <iostream>
using namespace std;
int main ()
{
int a=5; // initial value = 5
int b(2); // initial value = 2
int result; // initial value undetermined
a = a + 3;
result = a - b;
cout << result;
return 0;
}
This is popping up a compiler error saying " Multiple definitions of "Main""
Now This is on the actual C++ page so im guessing its a compiler error.
Could someone please point me in the right direction as to why this is happening and what is the cause for this error.
Multiple definitions of "main" suggests that you have another definition of main. Perhaps in another .c or .cpp file in your project. You can only have one function with the same name and signature (parameter types). Also, main is very special so you can only have one main function that can be used as the entry point (has either no parameters, one int, or an int and a char**) in your project.
P.S. Technically this is a linker error. It's a subtle difference, but basically it's complaining that the linker can't determine which function should be the entry point, because there's more than one definition with the same name.
Found I had two file references in my tasks.json file that were causing this error and which took me a long time to figure out. Hope this helps someone else..... See "HERE*****" below:
"-I/usr/include/glib-2.0",
"-I/usr/lib/x86_64-linux-gnu/glib-2.0/include",
//"${file}", //HERE**********************
"-lgtk-3",
"-lgdk-3",
"-lpangocairo-1.0",
"-lpango-1.0",
"-lharfbuzz",
"-latk-1.0",
"-lcairo-gobject",
"-lcairo",
"-lgdk_pixbuf-2.0",
"-lgio-2.0",
"-lgobject-2.0",
"-lglib-2.0",
"-o",
"${fileDirname}/${fileBasenameNoExtension}" //HERE*************
],
When I practiced CMake, I encountered the same problem. Finally, I found that the source code path set in the cmakelist project was incorrect. As a result, the compiled files included many duplicate files generated during CMake execution. As a result, compilation errors occurred

Compilation error only when using the repl

I am getting an error only when the code is entered line by line in the repl. It works when the whole program is pasted at once, or from the command line.
class A {
method a () {
return 1;
}
}
class B {
method b () {
return 2;
}
}
This is the error statement:
===SORRY!=== Error while compiling:
Package 'B' already has a method 'b' (did you mean to declare a multi method?)
This screen shot might make it clearer. On the left I just pasted the code, and on the right I entered it line by line. The code is still working but what is causing the error?
For some reason, I could not reproduce this using just one class.
I can reproduce that error, and looks like a REPL bug, or simply something the REPL is not prepared to do. This, for instance, will also raise an exception:
class A {
method a() {
return 1;
}
};
class foo {
has $.bar = 3;
};
In either form, either pasting it directly or in pieces. It's always the second class. It's probably related to the way EVAL works, but I really don't know. At the end of the day, the REPL can only take you so far and I'm not totally sure this is within the use case. You might want to use Comma or any other IDE, like emacs, for anything that's more complicated than a line; Comma also provides help for evaluating expressions, and even grammars.
I think Comma is the bees knees. And I almost never use the repl. But I enjoy:
Golfing Your example is a more than adequate MRE. But I love minimizing bug examples.
Speculating I think I can see what's going on.
Searching issue queues Rakudo has two issue queues on GH: old and new.
Spelunking compiler code Rakudo is mostly written in Raku; maybe we can work out what this problem is in the REPL code (which is part of the compiler)?
Golfing
First, the bug:
Welcome to 𝐑𝐚𝐤𝐮𝐝𝐨™ v2021.03.
Implementing the 𝐑𝐚𝐤𝐮™ programming language v6.d.
Built on MoarVM version 2021.03.
To exit type 'exit' or '^D'
> # 42
Nil
> { subset a
*
===SORRY!=== Error while compiling:
Redeclaration of symbol 'a'.
at line 3
------> <BOL>⏏<EOL>
Commentary:
To get on the fairway, enter any line that's not just whitespace, and press Enter.
Pick the right iron; open a block with {, declare some named type, and press Enter. The REPL indicates you're on the green by displaying the * multi-line prompt.
To sink the ball, just hit Enter.
Second, golfing in aid of speculation:
> # 42
Nil
> { BEGIN say 99
99
* }
99
>
(BEGIN marks code that is to be run during compilation as soon as the compiler encounters it.)
Speculating
Why does the initial # 42 evaluation matter? Presumably the REPL tries to maintain declarations / state (of variables and types etc) during a REPL session.
And as part of that it's presumably remembering all previous code in a session.
And presumably it's seeing anything but blank lines as counting as previous code.
And the mere existence of some/any previous code somehow influences what state the REPL is maintaining and/or what it's asking the compiler to do.
Maybe.
Why does a type declaration matter when, say, a variable declaration doesn't?
Presumably the REPL and/or compiler is distinguishing between these two kinds of declaration.
Ignoring the REPL, when compiling code, a repeated my declaration only raises a warning, whereas a repeated type declaration is an error. Quite plausibly that's why?
Why does a type declaration have this effect?
Presumably the type successfully compiles and only after that an exception is thrown (because the code is incomplete due to the missing closing brace).
Then the REPL asks the compiler to again try to compile the multi-line code thus far entered, with whatever additional code the user has typed (in my golf version I type nothing and just hit Enter, adding no more code).
This repeated compile attempt includes the type declaration again, which type declaration, because the compilation state from the prior attempt to compile the multi-line code is somehow being retained, is seen by the compiler as a repeat declaration, causing it to throw an exception that causes the REPL to exit multi-line mode and report the error.
In other words, the REPL loop is presumably something like:
As each line is entered, pass it to the compiler, which compiles the code and throws an exception if anything goes wrong.
If an exception is thrown:
2.1 If in multi-line mode (with * prompt), then exit multi-line mode (go back to > prompt) and display exception message.
2.2 Else (so not in multi-line mode), if analysis (plausibly very basic) of the exception and/or entered code suggests multi-line mode would be useful, then enter that mode (with * prompt). In multi-line mode, the entire multi-line of code so far is recompiled each time the user presses Enter.
2.3 Else, display exception message.
(Obviously there's something else going on related to initialization given the need to start with some evaluation to manifest this bug, but that may well be a completely distinct issue.)
Searching
I've browsed through all open Rakudo issues in its old and new queues on GH that match 'repl'. I've selected four that illustrate the range of difficulties the REPL has with maintaining the state of a session:
REPL loses custom operators. "Interestingly, if a postfix operator like this is exported by a module which is loaded by the REPL, the REPL can successfully parse that operator just once, after which it will fail with an error similar to the above." Is this related to the way the bug this SO is focused on doesn't manifest until it's a second or later evaluation?
Perl6 REPL forgets the definition of infix sub. Looks like a dupe of the above issue, but includes extra debugging goodies from Brian Duggan. ❤️
REPL messes up namespaces when Foo is used after Foo::Bar.
In REPL cannot bind to scalars declared on earlier lines.
One thing I haven't done is checked whether these bugs all still exist. My guess is they do. And there are many others like them. Perhaps they have a somewhat common cause? I've no idea. Perhaps we need to look at the code...
Spelunking
A search of the Rakudo sources for 'repl' quickly led to a REPL module. Less than 500 lines of high level Raku code! \o/ (For now, let's just pretend we can pretty much ignore digging into the code it calls...)
From my initial browser, I'll draw attention to:
A sub repl:
sub repl(*%_) {
my $repl := REPL.new(nqp::getcomp("Raku"), %_, True);
nqp::bindattr($repl,REPL,'$!save_ctx',nqp::ctxcaller(nqp::ctx));
$repl.repl-loop(:no-exit);
}
Blame shows that Liz added this a couple months ago. It's very tangential to this bug, but I'm guessing methods and variables with ctx in their name are pretty central to things so this is hopefully a nice way to start pondering that.
method repl-eval. 30 lines or so.
REPL: loop { ... }. 60 lines or so.
That'll do for tonight. I'll post this then return to it all another day.

Disable Syntax Error "Symbol <id> could not be resolved" for some symbols in Eclipse Plugin using CDT

In my eclipse plugin I want to support my tool's language which extends C++ with some keywords and concepts. My language class, editor class and source parser class are all inheriting CDT classes for C++. I can parse the keywords and add nodes for them to the AST. But some of my keywords/commands the editor will always mark as "Symbol could not be resolved".
Example:
There is a command "#result" which returns the result of a last computation as an enum value that is defined in some header file in the tool's core.
typedef enum {
OK = 0;
WARNING = 1;
ERROR = 2;
} errCode_t;
So the command #result returns 0, 1 or 2. But inside the editor the command is marked as Symbol '#result' could not be resolved. No I want to tell the Indexer to not try to resolve this very token.
In the Preprocessor class I could change the token type from IToken.tIDENTIFIER to, say, 50000. What I try to achieve by that is something like
if (token.getType() == 50000) {
// don't try to resolve symbol
return null;
} else {
return super.resolveSymbol();
}
Is there a way to do that? I think my first problem is that I don't understand who or what is responsible for the Syntax Error Marking (maybe the Indexer?).
Errors of the form Symbol ... could not be resolved are produced by CDT's Code Analysis component, specifically ProblemBindingChecker, which traverses the AST and reports the error for any IASTName which resolves (via IASTName.resolveBinding()) to a ProblemBinding.
It is only IASTName nodes which resolve to bindings, so if you are getting this error for your #result token, that suggests the parser is building an IASTName node for it. I'm not sure how that's happening if you've changed the token type, I suppose it depends on how you handle the new token type in your extended parser.

Workflow won't compile

I'm getting the following error when trying to execute my custom build definition (containing only 1 custom CodeActivity):
Exception Message: Expression Activity type 'CSharpReference`1' requires compilation in order to run. Please ensure that the workflow has been compiled. (type NotSupportedException)
I've tried multiple suggested answers to this error, but none of them are applicable to my activity. My CodeActivity only has a couple of methods that search through directories for specific files, and then returns a delimited string containing the file names.
I don't use any WorkflowInvoker or any DynamicActivities. For what reason would I keep getting this error?
Thanks
I had the same error on an assignment step.
System.NotSupportedException: Expression Activity type 'CSharpValue`1' requires compilation in order to run.
Please ensure that the workflow has been compiled.
The resolution was to remove the carriage returns from statement.
For example this works:
new Foo() { Bar = new Bar() { MyProp1 = "123" } }
This does not:
new Foo()
{
Bar = new Bar()
{
MyProp1 = "123"
}
}
I decided not to work in a clean xaml file, but instead to use the Default Template provided by TFS. The Default template ran my activities without errors.
I was able to fix this solution as well by using the Default Template provided by TFS, clearing all of their activities, and adding the custom activities and arguments in my original custom template.
However, more insight in to this issue, it seems to be caused by the fact that custom template use C# expressions to handle the arguments. Where as the default template is set up to use VB Expressions for it's arguments.
In my case, the language didn't matter because the values were simply strings.

Write a compiler for a language that looks ahead and multiple files?

In my language I can use a class variable in my method when the definition appears below the method. It can also call methods below my method and etc. There are no 'headers'. Take this C# example.
class A
{
public void callMethods() { print(); B b; b.notYetSeen();
public void print() { Console.Write("v = {0}", v); }
int v=9;
}
class B
{
public void notYetSeen() { Console.Write("notYetSeen()\n"); }
}
How should I compile that? what i was thinking is:
pass1: convert everything to an AST
pass2: go through all classes and build a list of define classes/variable/etc
pass3: go through code and check if there's any errors such as undefined variable, wrong use etc and create my output
But it seems like for this to work I have to do pass 1 and 2 for ALL files before doing pass3. Also it feels like a lot of work to do until I find a syntax error (other than the obvious that can be done at parse time such as forgetting to close a brace or writing 0xLETTERS instead of a hex value). My gut says there is some other way.
Note: I am using bison/flex to generate my compiler.
My understanding of languages that handle forward references is that they typically just use the first pass to build a list of valid names. Something along the lines of just putting an entry in a table (without filling out the definition) so you have something to point to later when you do your real pass to generate the definitions.
If you try to actually build full definitions as you go, you would end up having to rescan repatedly, each time saving any references to undefined things until the next pass. Even that would fail if there are circular references.
I would go through on pass one and collect all of your class/method/field names and types, ignoring the method bodies. Then in pass two check the method bodies only.
I don't know that there can be any other way than traversing all the files in the source.
I think that you can get it down to two passes - on the first pass, build the AST and whenever you find a variable name, add it to a list that contains that blocks' symbols (it would probably be useful to add that list to the corresponding scope in the tree). Step two is to linearly traverse the tree and make sure that each symbol used references a symbol in that scope or a scope above it.
My description is oversimplified but the basic answer is -- lookahead requires at least two passes.
The usual approach is to save B as "unknown". It's probably some kind of type (because of the place where you encountered it). So you can just reserve the memory (a pointer) for it even though you have no idea what it really is.
For the method call, you can't do much. In a dynamic language, you'd just save the name of the method somewhere and check whether it exists at runtime. In a static language, you can save it in under "unknown methods" somewhere in your compiler along with the unknown type B. Since method calls eventually translate to a memory address, you can again reserve the memory.
Then, when you encounter B and the method, you can clear up your unknowns. Since you know a bit about them, you can say whether they behave like they should or if the first usage is now a syntax error.
So you don't have to read all files twice but it surely makes things more simple.
Alternatively, you can generate these header files as you encounter the sources and save them somewhere where you can find them again. This way, you can speed up the compilation (since you won't have to consider unchanged files in the next compilation run).
Lastly, if you write a new language, you shouldn't use bison and flex anymore. There are much better tools by now. ANTLR, for example, can produce a parser that can recover after an error, so you can still parse the whole file. Or check this Wikipedia article for more options.