How can i match if two RDD generated the way i did contains the same data including number of rows?
I'm using scala test to run the tests and spark version 3 with scala 2.12.12
Below my code from the creation of the schemas of my two rdd, included the expected one and the creation of all 3 rdd with data.
-- CREATING SCHEMA FOR RDD AMOUNTS AND WAREHOUSE AND EXPECTED FINAL SCHEMA
val amountsSchema: StructType = StructType(
Seq(
StructField("positionId", LongType, nullable = true),
StructField("amount", DecimalType(10, 2), nullable = true),
StructField("eventTime",LongType, nullable = true),
)
)
val warehouseSchema: StructType = StructType(
Seq(
StructField("positionId", LongType, nullable = true),
StructField("warehouse", StringType, nullable = true),
StructField("product", StringType, nullable = true),
StructField("eventTime",LongType, nullable = true),
)
)
val expectedDfSchema: StructType = StructType(
Seq(
StructField("positionId", LongType, nullable = true),
StructField("warehouse", StringType, nullable = true),
StructField("product", StringType, nullable = true),
StructField("amount", DecimalType(10, 2), nullable = true),
)
)
--- CREATING DATA FOR RDD AMOUNTS RDD AND WAREHOUSE RDD AND EXPECTED FINAL RDD
val amounts_data = Seq(
Row("1", "5.00", "1528463387"),
Row("1", "7.20", "1528463005"),
Row("2", "5.00", "1528463097"),
Row("2", "7.20", "1528463007"),
Row("3", "6.00", "1528463078"),
Row("4", "24.20", "1528463008"),
Row("4", "15.00", "1528463100"),
)
val wh_data = Seq(
Row("1", "W-1", "P-1", "1528463098"),
Row("2", "W-2", "P-2", "1528463097"),
Row("3", "W-2", "P-3", "1528463078"),
Row("4", "W-1", "P-6", "1528463100"),
)
val expected_data = Seq(
Row("1", "W-1", "P-1", "5.00"),
Row("2", "W-2", "P-2", "5.00"),
Row("3", "W-2", "P-3", "6.00"),
Row("4", "W-1", "P-6", "15.00")
)
---- CREATING RDD WITH SCHEMAS AND DATA FOR DF_AMOUNTS AND DF_WAREHOUSE AND FOR THE EXPECTED RDD WITH EXPECTED_DATA
val df_amounts: DataFrame = spark.createDataFrame(
spark.sparkContext.parallelize(amounts_data),
amountsSchema
)
val df_wh: DataFrame = spark.createDataFrame(
spark.sparkContext.parallelize(wh_data),
warehouseSchema
)
val df_expected: DataFrame = spark.createDataFrame(
spark.sparkContext.parallelize(expected_data),
expectedDfSchema
)
---- USING GET_AMOUNTS METHOD TO GENERATE A RDD FROM THE FUNCTION get_amounts
val resDf: DataFrame = get_amounts(df_amounts, df_wh)
---- TESTING IF THE resDf SCHEMA MATCH WITH THE EXPECTED SCHEMA - IT DOES TEST PASSED
test("DataFrame Schema Test") {
assert(assertSchema(resDf.schema, df_expected.schema))
}
---- TESTING IF THE resDf DATA MATCH WITH THE EXPECTED DATA - IT DOESNT'T MATCH
test("DataFrame Data Test") {
assert(assertData(resDf, df_expected))
}
}
The assertData function used to match the data for the expected data rdd and the one coming from my function get_amounts but it fails the test.
def assertData(df1: DataFrame, df2: DataFrame): Boolean = {
df1.exceptAll(df2).rdd.isEmpty()
}
Thank You
The way you create a datasets is valid. A test structure looks good as well.
I would suggest to improve your assert method to see why the test case failes, here you can find some thoughts on your testing method:
exceptAll is not a perfect for testing, if the df2 contains an additional row it will still say that the data matches, consider below code:
val df1 = Seq(
(1, "x"),
(2, "y")
).toDF("x", "y")
val df2 = Seq(
(1, "x"),
(2, "y"),
(3, "z")
).toDF("x", "y")
assert(df1.exceptAll(df2).rdd.isEmpty())
"this function resolves columns by position (not by name)" (from Spark code scala docs), due to this sometimes you can get confused about your test result.
your assert method says nothing about what exactly mismatched
For testing purposes is not bad to collect (small amount of) data and match sequences.
You can consider using a method like this one:
def matchDF(resultDF: DataFrame, expectedDF: DataFrame): Unit = {
resultDF.printSchema()
expectedDF.printSchema()
assert(resultDF.schema == expectedDF.schema,
s"Schema does not match: ${resultDF.schema} != ${expectedDF.schema}")
val expected = expectedDF.collect().toSeq
val result = resultDF.collect().toSeq
assert(expected == result, s"Data does not match: $result != $expected")
}
It's not a perfect approach (still depends on the position in a row), but at least you will be able to find out what is going on and why your test fails.
For wrong data you'll see this:
assertion failed: Data does not match: WrappedArray([1,x], [2,y]) != WrappedArray([1,x], [3,y])
For wrong schema you'll get:
root
|-- x: integer (nullable = false)
|-- y: string (nullable = true)
root
|-- x: string (nullable = true)
|-- y: string (nullable = true)
Exception in thread "main" java.lang.AssertionError: assertion failed: Schema does not match
I hope this will help you understand what is going wrong.
Related
I try to create empty df with schema:
val sparkConf = new SparkConf()
.setAppName("app")
.setMaster("local")
val sparkSession = SparkSession
.builder()
.config(sparkConf)
.getOrCreate()
val sparkContext = sparkSession.sparkContext
var tmpScheme = StructType(
StructField("source_id", StringType, true) :: Nil)
var df = conf.SparkConf.sparkSession.createDataFrame(tmpScheme)
and got Schema for type org.apache.spark.sql.types.DataType is not supported ...
I don't understand why - there is no .DataType even in Imports:
import org.apache.spark.sql.types.{BooleanType, IntegerType, StringType, StructField, StructType}
What can be the problem here?
PS: spark version
"org.apache.spark" %% "spark-sql" % "3.2.2", // spark
"org.apache.spark" %% "spark-core" % "3.2.2", // spark
If you check the documentation, you can see that the argument fields of StructType is of type Array[StructField] and you are passing StructField.
This means that you should wrap your StructField with Array, for example:
val simpleSchema = StructType(Array(
StructField("source_id", StringType, true))
)
Good luck!
EDIT
The case with one parameter in createDataframe:
val data = Seq(
Data(1, "test"),
Data(2, "test2")
)
val dataDf = spark.createDataFrame(data)
dataDf.show(10, false)
The case with two parameterse in createDataframe:
val someSchema = List(
StructField("number", IntegerType, true),
StructField("word", StringType, true)
)
val someData = Seq(Row(1, "test"), Row(2, "test2"))
val someDF = spark.createDataFrame(
spark.sparkContext.parallelize(someData),
StructType(someSchema)
)
The output for both cases is the same:
+------+-----+
|number|word |
+------+-----+
|1 |test |
|2 |test2|
+------+-----+
In your case, the schema is trying to be inferred from attributes of the class (StructType) and is trying to be populated with StructField: source_id. StructType extends DataType and that is where your error comes from (Spark can not resolve the type)
I have a StructType as follows:
to_Schema = StructType([StructField('name', StringType(), True),
StructField('sales', IntegerType(), True)])
The dataframe_1 has both fields as StringType. So I created the above StructType so that I could use it to typecast the fields in dataframe_1.
I am able to do it in Scala:
val df2 = dataframe_1.selectExpr(to_Schema.map(
col => s"CAST ( ${col.name} As ${col.dataType.sql}) ${col.name}"
): _*)
I am not able to use the same map function in python as StructType has no map function.
I've tried using for loop but it doesn't work as expected.
I am looking for a PySpark equivalent of the above Scala code.
The below code will achieve the same thing in python:
for s in to_Schema:
df = df.withColumn(s.name, df[s.name].cast(s.dataType))
You can also create a new dataframe from the old one using the new schema as shown in this answer:
df2 = spark.createDataFrame(dataframe_1.rdd, to_Schema)
This would be the direct translation:
df2 = dataframe_1.selectExpr(*[f"CAST ({c.name} AS {c.dataType.simpleString()}) {c.name}" for c in to_Schema])
It could be simplified:
df2 = dataframe_1.select([col(c.name).cast(c.dataType).alias(c.name) for c in to_Schema])
However, I like this answer more ;)
44,8602,37.19
35,5368,65.89
35,3391,40.64
44,6694,14.98
val sc = new SparkContext("local[*]", "TotalSpentByCustomer")
val input = sc.textFile("C:\\Spar\cuscopy.csv")
val fields = input.map(x => (x.split("\t")(1).toInt, 1, 2.toFloat, 2))
val d = fields.reduceByKey((x,y) => x+y)
val results = d.collect()
results.foreach(print)
Getting error
value reduceByKey is not a member of org.apache.spark.rdd.RDD[(Int,
Int, Float, Int)]
val d = fields.reduceByKey((x,y) => x+y)
Please suggest is it right way to parse fields ?
You could load the csv file to a dataframe with a given schema using the Spark Project SQL library and if needed convert it to a RDD.
// remove those lines when not using jupyter
interp.load.ivy("org.apache.spark" %% "spark-sql" % "3.2.0")
interp.load.ivy("org.apache.spark" %% "spark-core" % "3.2.0")
import org.apache.spark.sql.types.{StructType, StructField, FloatType, IntegerType};
val spark = org.apache.spark.sql.SparkSession.builder
.master("local")
.appName("Spark CSV Reader")
.getOrCreate;
// create a new schema for reading the csv
val schema = new StructType()
.add("Field1", IntegerType, true)
.add("Field2", IntegerType ,true)
.add("Field3", FloatType, true)
val df = spark.read.format("csv")
.schema(schema)
.load("/vagrant/test/test.csv") //replace with desired path
// select only column 1 & 2, not sure if this was intended by the questioner
val selected = df.select("Field1","Field2")
// convert your dataframe to a rdd
val d = selected.rdd
d.collect().foreach(println)
This outputs the following lines for the given input from the question
[44,8602]
[35,5368]
[35,3391]
[44,6694]
How to read a csv file in Spark which has a structure like:
id,name,address
1,"ashu","building","street","area","city","state","pin"
When using a reader:
val df = spark.read.option("header",true).csv("input/input1.csv")
I am getting record till the third value in CSV.
+---+----+--------+
| id|name| address|
+---+----+--------+
| 1|ashu|building|
+---+----+--------+
How to ask Spark to read all the values starting from third value till the last one in single dataframe column address like:
+---+----+-----------------------------------------------+
| id|name| address |
+---+----+-----------------------------------------------+
| 1|ashu|"building","street","area","city","state","pin"|
+---+----+-----------------------------------------------+
I'm making my answer fit your requirements to use CSV. This is the least painful way to do what you want to do.
Modify your CSV file so that it use "|" to split fields instead of ",". This will allow you to have ',' inside your columns.
id,name,address
1|"ashu"|"building","street","area","city","state","pin"
Modify you code:
val df = spark.read
.option("header",true)
.option("delimiter", '|')
.csv("input/input1.csv")
If you can fix your input files to use another delimiter character than you should do that.
However, if you don't have that possibility, you can still read the file without header and specify a custom schema. Then, concatenate the 6 address columns to get the desired dataframe:
import org.apache.spark.sql.types._
val schema = StructType(
Array(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("address1", StringType, true),
StructField("address2", StringType, true),
StructField("address3", StringType, true),
StructField("address4", StringType, true),
StructField("address5", StringType, true),
StructField("address6", StringType, true)
)
)
val input = spark.read.schema(schema).csv("input/input1.csv")
val df = input.filter("name != 'name'").withColumn(
"address",
concat_ws(", ", (1 to 6).map(n => col(s"address$n")):_*)
).select("id", "name", "address")
df.show(false)
//+---+----+----------------------------------------+
//|id |name|address |
//+---+----+----------------------------------------+
//|1 |ashu|building, street, area, city, state, pin|
//+---+----+----------------------------------------+
I would like to read a .csv file with Spark and associate the columns with fitting Types.
val conf = new SparkConf()
.setMaster("local[8]")
.setAppName("Name")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val customSchema = StructType(Array(
StructField("date", DateType, true),
StructField("time",StringType, true),
StructField("am", DoubleType, true),
StructField("hum", DoubleType, true),
StructField("temp", DoubleType, true)
))
val df = sqlContext.read
.format("org.apache.spark.sql.execution.datasources.csv.CSVFileFormat")
.option("header","true")
.option("delimiter",";")
.schema(customSchema)
.load("data.csv")
A line of the .csv I am reading looks like this
+----------+--------+-----+-----+-----+
| date| time| am| hum| temp|
+----------+--------+-----+-----+-----+
|04.10.2016|12:51:20|1.121|0.149|0.462|
+----------+--------+-----+-----+-----+
Spark will read the .csv and associate the Types correctly if I set the type for the date to String. If I keep the customSchema like in the code shown above, Spark will throw an exception due to the wrong date format (DateType will expect YYYY-MM-DD while mine is DD.MM.YYYY).
Is there a way to re-format the date Strings to YYYY-MM-DD and apply the schema afterwards? Or can I also alter the DateType given by Spark by adding parameters?
Thanks in advance
Use dateFormat option:
val df = sqlContext.read
.format("org.apache.spark.sql.execution.datasources.csv.CSVFileFormat")
.option("header","true")
.option("delimiter",";")
.option("dateFormat", "dd.MM.yyyy")
.schema(customSchema)
.load("data.csv")
I recommend parsing the dates afterwards. Also refer to this.
val df = Seq((1L, "05/26/2016 01:01:01"), (2L, "#$####")).toDF("id", "dts")
import org.apache.spark.sql.functions.unix_timestamp
val ts = unix_timestamp($"dts", "MM/dd/yyyy HH:mm:ss").cast("timestamp")
df.withColumn("ts", ts).show(2, false)
// +---+-------------------+---------------------+
// |id |dts |ts |
// +---+-------------------+---------------------+
// |1 |05/26/2016 01:01:01|2016-05-26 01:01:01.0|
// |2 |#$#### |null |
// +---+-------------------+---------------------+
and:
scala> date.format(DateTimeFormatter.ofPattern("yyyy.MM.dd"))
res0: String = 2020.01.01
Also as a side note, since spark 2.0, you use spark session object only and use encoders for inferring schema(instead of sc, sqlcontext etc). Something like this:
spark = SparkSession(...)
case class User(id:Int, city:String, loc:Array[Double], pop:Long, state:String)
val users = (spark.read.option("inferSchema","true").option("header","true").csv("data/users1.csv").as[User])