imshow() extent limits not giving correct solution - matplotlib

I am a novice to python. I was trying to plot 2 D color plot using imshow(). Here, x axis is the time scale, yaxis is the energy and the colorbar z axis is the differential energy flux. When i plot somehow the y axis do not correspond to the actual value. I had tried using contourf as well as plotly heatmap. However I find though the results come correctly it does not have the same visual impact as imshow.
import matplotlib.pyplot as plt
from matplotlib import colors
import numpy as np
import matplotlib.dates as mdates
from mpl_toolkits.axes_grid1 import make_axes_locatable
import datetime as dt
x_lims = list(map(dt.datetime.utcfromtimestamp, [1266050102.1784432, 1266054264.5317998]))
x_lims = mdates.date2num(x_lims)
y1 = [3.1209615e+04, 2.6360914e+04, 2.0025836e+04, 1.5213330e+04, 1.1557158e+04,
8.7796689e+03, 6.6698813e+03, 5.0668237e+03, 3.8490525e+03, 2.9246511e+03,
2.2212300e+03, 1.6873538e+03, 1.2815887e+03, 9.7440747e+02, 7.3961621e+02,
5.6149872e+02, 4.2719626e+02, 3.2432623e+02, 2.4669749e+02, 1.8716624e+02,
1.4239874e+02, 1.0858500e+02, 8.2391251e+01, 6.2388748e+01, 4.7625000e+01,
3.6195000e+01, 2.7622499e+01, 2.0478750e+01, 1.5716249e+01, 1.2382500e+01,
9.0487499e+00, 7.1437497e+00]
y = np.array(y1)
y_lims = [y.min(), y.max()]
extent_lims = [x_lims[0], x_lims[1], y_lims[0], y_lims[1]]
z = flux_elec.T
fig, ax = plt.subplots()
im = ax.imshow(z, interpolation='none', extent=extent_lims, cmap='jet', aspect='auto')
date_format = mdates.DateFormatter('%H:%M')
ax.set_yscale('log')
ax.xaxis.set_major_formatter(date_format)
ax.xaxis_date()
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax, label="diff. en. flux")
[enter image description here](https://i.stack.imgur.com/Op1X7.png)
In this the high energy flux (8) should finish before 100 but its extending till 5000. I am unable to locate the error.

Related

Curve fitting exponential function with semilog x-axis

I'm having trouble fitting some date onto an exponential function with a semilog x-axis.
Following is the code:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
kd=np.array[0.735420099, 0.700823723, 0.647775947,0.613179572,0.573970346,0.54398682,0.454036244,0.371004942,0.292586491,0.271828666,0.21878089,0.165733114,0.157660626,0.151894563]
ADAR = np.array[0.001012268,0.002028379,0.004015198,0.005931555,0.007948127,0.010143277,0.019594977,0.039746044,0.076782168,0.101639121,0.193968714,0.574178304,0.778822803,0.9878803]
def func(x,a,c,d):
return a*np.exp(-c*x)+d
init_v = (1,1e-6,0)
opt,pcov = curve_fit(func,ADAR,kd,init_v)
a,c,d = opt
x2 = np.linspace(0.001,1)
y2 = func(x2,a,c,d)
plt.grid(True, which = "both")
fig = plt.figure()
ax = plt.gca()
ax.scatter(ADAR,kd, c = 'blue')
ax.set_xscale('log')
plt.xlim([0.001,1])
plt.ylim([0,0.8])
plt.plot(x2,y2, '-', label = 'fit')
plt.legend()
plt.title('Area pressure coefficient')
plt.xlabel('AD/AR')
plt.ylabel('kd')
plt.show
Trying to fit the scatter plot:
Using Scipy Curve_fit with initial guesses I am unable to get a close fit of the data. Am I using the wrong function for this?

Matplotlib: strange minor ticks with log base 2 colorbar

I am plotting some contours with tricontourf. I want the colormap to be scaled in log values and tick labels and colours bounds to be in log base 2. Here's my code:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import matplotlib.ticker as ticker
import matplotlib.colors as colors
section = 'T7'
data = np.loadtxt( section + '_values.dat')
x = data[:,0]
y = data[:,1]
z = data[:,2]
triang = tri.Triangulation(x,y)
fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
bounds = [2.**-1,2.**1,2**3,2**5,2**7,2**9]
norm = colors.LogNorm()
formatter = ticker.LogFormatter(2)
tcf = ax1.tricontourf(triang, z, levels = bounds, cmap='hot_r', norm = norm )
fig1.colorbar(tcf, format=formatter)
plt.show()
And here's the result:
What are thos ugly minor ticks and how do I get rid of them?
Using Matplotlib 3.3.0 an Mac OS
You could use cb.ax.minorticks_off() to turn off the minor tick and cb.ax.minorticks_on() to turn it on.
cb = fig1.colorbar(tcf, format=formatter)
cb.ax.minorticks_off()
matplotlib.pyplot.colorbar returns a Colorbar object which extends ColorbarBase.
You can find that two functions in the document of class matplotlib.colorbar.ColorbarBase.

How to have only 1 shared colorbar for multiple plots [duplicate]

I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:

Problem with ortho projection and pcolormesh in matplotlib-basemap

I have trouble with the ortho projection and pcolormesh.
It should plot a mesh of grid points. Instead, in the upper right portion of the sphere it plots strange lines instead of grid points. The mapping of the mesh looks off.
I tried the code below.
from mpl_toolkits.basemap import Basemap
import numpy as np
import matplotlib.pyplot as plt
plt.clf()
dpp =1 # degrees per pixel
lons = np.arange(-180,180+dpp,dpp)
lats = -1*np.arange(-90,90+dpp,dpp)
m = Basemap(projection='ortho', lon_0=0, lat_0=-60, resolution='l')
data = np.random.random((np.size(lats), np.size(lons)))
lons, lats = np.meshgrid(lons, lats)
x, y = m(lons, lats)
im = m.pcolormesh(x, y, data, latlon=False, cmap='RdBu')
#im = m.pcolormesh(lons, lats, data, latlon=True, cmap='RdBu')
m.colorbar(im)
plt.show()
I obtain the following plot:
The random noise should be mapped onto the entire sphere, but there is clearly an error in the upper right of the ortho map.
Does anyone else get this error with the included code?
Since basemap would require you to manually filter out unwanted data (those that are "behind the globe"), here is how to do the same with cartopy.
import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
proj = ccrs.Orthographic(central_longitude=0.0, central_latitude=-60.0)
plt.figure(figsize=(3, 3))
ax = plt.axes(projection=proj)
dpp =1
lons = np.arange(-180,180+dpp,dpp)
lats = 1*np.arange(-90,90+dpp,dpp)
data = np.random.random((np.size(lats), np.size(lons)))
lons, lats = np.meshgrid(lons, lats)
im = ax.pcolormesh(lons, lats, data, cmap='RdBu', transform=ccrs.PlateCarree())
ax.coastlines(resolution='110m')
ax.gridlines()
plt.show()
A fix to Basemap was suggested in the github basemap thread here

How can one edit the "Text" object from the "Y" and "X" axis from a gridlined cartopy geopandas plot

This question arose from another Stackoverflow Issue 1:
My problem regards the edition of the X and Y axis ticklabels from a cartopy-geopandas plot. I would like to change my Text object from each of my ticklabels (X, and Y axis) according to a certain rule.
For example, I would like to change the decimal separator ('.') into comma separator (',') from my X and Y axis ticklabels.
Here is a code that can't do that:
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import geopandas as gpd
Geopandas_DF = gpd.read_file('my_file.shp')
# setting projection and Transform
Projection=ccrs.PlateCarree()
Transform = ccrs.Geodetic(globe=ccrs.Globe(ellipse='GRS80'))
Fig, Ax = plt.subplots(1,1, subplot_kw={'projection': Projection})
Geopandas_DF.plot(ax=Ax, transform=Ax.transData)
gl = Ax.gridlines(crs=Projection , draw_labels=True, linewidth=0.5,
alpha=0.4, color='k', linestyle='--')
gl.top_labels = False
gl.right_labels = False
### Creating a function to change my Ticklabels:
def Ticker_corrector(ax):
"""
Parameter:ax, axes whose axis X and Y should be applied the function
"""
## Correcting the Axis X and Y of the main Axes
Xticks = ax.get_xticklabels()
for i in Xticks:
T = i.get_text()
T = T.replace('.',',')
i = i.set_text(T)
print(T)
ax.set_xticklabels(Xticks)
## Correcting the Axis Y
Yticks = ax.get_yticklabels()
for i in Xticks:
T = i.get_text()
T = T.replace('.',',')
i = i.set_text(T)
print(T)
ax.set_yticklabels(Yticks)
return ax
Ax = Ticker_corrector(Ax)
Fig.show()
One interesting part of the code above is that it runs without problem. The Python does not indicate any error in it, and it plots the Figure without any error warning.
Nonetheless, the Ticklabels are kept unchanged. Therefore, I need help with that problem.
I thank you for your time.
Sincerely yours,
I believe I have found a solution. It may not work always, but it certainly solved my problem.
The fundamental basis for the solution was to set the "Locale" of my matplotlib before creating my plot.
Here is an example:
import locale
locale.setlocale(locale.LC_ALL, "Portuguese_Brazil.1252")
import matplotlib as mpl
mpl.rcParams['axes.formatter.use_locale'] = True
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import geopandas as gpd
Geopandas_DF = gpd.read_file('my_file.shp')
# setting projection and Transform
Projection=ccrs.PlateCarree()
Transform = ccrs.Geodetic(globe=ccrs.Globe(ellipse='GRS80'))
Fig, Ax = plt.subplots(1,1, subplot_kw={'projection': Projection})
Geopandas_DF.plot(ax=Ax, transform=Ax.transData)
gl = Ax.gridlines(crs=Projection , draw_labels=True, linewidth=0.5,
alpha=0.4, color='k', linestyle='--')
gl.top_labels = False
gl.right_labels = False
Fig.show()