GA4 is recording lesser Ecommerce purchase count? (upto 20 to 30% Less) is it normal? What is standard here? - e-commerce

Is it normal to get lesser ecommerce purchase data accuracy in GA4 (even lesser upto 20 to 30%) comparing the data base record? What is standard here? Also please mention the reason of the record and tracking discrepency.
To get the understanding

Well, the most obvious reason is adblockers. They would block your tracking.
The percentage depends on the likeliness of particular audience to block it. We generally expect it to be around 10%, but, as an example, it can reach even 50% when you look at the STEM student traffic.
Other common issue is poorly implemented tracking. Which, in the case of conversions, is more likely to double count the conversions rather than undercount them, but that is possible too.
Finally, GA4's interface is still not a very reliable tool to access your data, so you may take a glance at it in BQ if you're friendly with SQL just to make sure what you're seeing in a GA4 interface is really what's in data.

Related

What exactly does A/B test mean in this scenario?

When multiple developers are continually applying changes to databases
within an organization, there may be no structured change log. Then
it's difficult to find out what change caused the database performance
to slow down. In a call center, where results must be instantaneous
for customers waiting on the phone, an adverse change can be
detrimental to the business. The DEA tests a change that might have an
impact, and compares it to the unchanged database. You apply the A/B
testing method to analyze one change at a time, helping you to clearly
know its effect. The change might mean an improvement to performance,
degradation, or maybe no performance difference, which is equally
acceptable.
I am looking for an example to understand the following statement from the above quote: The DEA tests a change that might have an impact, and compares it to the unchanged database. You apply the A/B testing method to analyze one change at a time, helping you to clearly know its effect.
For example - suppose a setting is currently having the value as 0 and I want to set it to 1. How will the above A/B testing help me exactly?
You got two environments and the only difference between them is the setting you specified. And then you split the traffic to the DB into two (50% vs. 50% for example), and part of them goes to the first enviroment and part of them goes to another. You monitor the metrics (performance or something else) and if the difference is statistically significant, you would have high confidence that setting is the change that moves the metric.

Why getting items count in distributed storage is a costly operation?

I was reading that book about APIs called "API design patterns" by JJ Geewax and there was a section that talks about getting the count of items and he said it's not a good idea especially in distributed storage systems.
page 102
Next, there is often the temptation to include a count of the items along with the listing. While this
might be nice for user-interface consumers to show a total number of matching results, it often
adds far more headache as time goes on and the number of items in the list grows beyond what
was originally projected. This is particularly complicated for distributed storage systems that are
not designed to provide quick access to counts matching specific queries. In short, it's generally a
bad idea to include item counts in the responses to a standard List method.
Anyone has a clue why is that or at least gives me keywords to search for.
In a typical database (e.g., a MySQL db with a few gigs of data in there), counting the number of rows is pretty easy. If that's all you'll ever deal with, then providing a count of matching results isn't a huge deal -- the concern comes up when things get bigger.
As the amount data starts growing (e.g., say... 10T?), dynamically computing an accurate count of matching rows can start to get pretty expensive (you have to scan and keep a running count of all the matching data). Even with a distributed storage system, this can be fast, but still expensive. This means your API will be spending a lot of computing resources to calculate the total number of results when it could be doing other important things. In my opinion, this is wasteful (a large expense for a "nice-to-have" on the API). If counts are critical to the API, then that changes the calculation.
Further, as changes to the data become more frequent (more creates, updates, and deletes), a count becomes less and less accurate as it might change drastically from one second to the next. In that case, not only is there more work being done to come up with a number, but that number isn't even all that accurate (and presumably, not super useful at that point).
So overall... result counts on larger data sets tend to be:
Expensive
More nice-to-have than business critical
Inaccurate
And since APIs tend to live much longer than we ever predict and can grow to a size far larger than we imagine, I discourage including result counts in API responses.
Every API is different though, so maybe it makes sense to have counts in your API, though I'd still suggest using rough estimates rather than exact counts to future-proof the API.
Some good reasons to include a count:
Your data size will stay reasonably small (i.e., able to be served by a single MySQL database).
Result counts are critical to your API (not just "nice-to-have").
Whatever numbers you come up with are accurate enough for your use cases (i.e., exact numbers for small data sets or "good estimates", not useless estimates).

I am looking for a radio advertising scheduling algorithm / example / experience

Tried doing a bit of research on the following with no luck. Thought I'd ask here in case someone has come across it before.
I help a volunteer-run radio station with their technology needs. One of the main things that have come up is they would like to schedule their advertising programmatically.
There are a lot of neat and complex rule engines out there for advertising, but all we need is something pretty simple (along with any experience that's worth thinking about).
I would like to write something in SQL if possible to deal with these entities. Ideally if someone has written something like this for other advertising mediums (web, etc.,) it would be really helpful.
Entities:
Ads (consisting of a category, # of plays per day, start date, end date or permanent play)
Ad Category (Restaurant, Health, Food store, etc.)
To over-simplify the problem, this will be a elegant sql statement. Getting there... :)
I would like to be able to generate a playlist per day using the above two entities where:
No two ads in the same category are played within x number of ads of each other.
(nice to have) high promotion ads can be pushed
At this time, there are no "ad slots" to fill. There is no "time of day" considerations.
We queue up the ads for the day and go through them between songs/shows, etc. We know how many per hour we have to fill, etc.
Any thoughts/ideas/links/examples? I'm going to keep on looking and hopefully come across something instead of learning it the long way.
Very interesting question, SMO. Right now it looks like a constraint programming problem because you aren't looking for an optimal solution, just one that satisfies all the constraints you have specified. In response to those who wanted to close the question, I'd say they need to check out constraint programming a bit. It's far closer to stackoverflow that any operations research sites.
Look into constraint programming and scheduling - I'll bet you'll find an analogous problem toot sweet !
Keep us posted on your progress, please.
Ignoring the T-SQL request for the moment since that's unlikely to be the best language to write this in ...
One of my favorites approaches to tough 'layout' problems like this is Simulated Annealing. It's a good approach because you don't need to think HOW to solve the actual problem: all you define is a measure of how good the current layout is (a score if you will) and then you allow random changes that either increase or decrease that score. Over many iterations you gradually reduce the probability of moving to a worse score. This 'simulated annealing' approach reduces the probability of getting stuck in a local minimum.
So in your case the scoring function for a given layout might be based on the distance to the next advert in the same category and the distance to another advert of the same series. If you later have time of day considerations you can easily add them to the score function.
Initially you allocate the adverts sequentially, evenly or randomly within their time window (doesn't really matter which). Now you pick two slots and consider what happens to the score when you switch the contents of those two slots. If either advert moves out of its allowed range you can reject the change immediately. If both are still in range, does it move you to a better overall score? Initially you take changes randomly even if they make it worse but over time you reduce the probability of that happening so that by the end you are moving monotonically towards a better score.
Easy to implement, easy to add new 'rules' that affect score, can easily adjust run-time to accept a 'good enough' answer, ...
Another approach would be to use a genetic algorithm, see this similar question: Best Fit Scheduling Algorithm this is likely harder to program but will probably converge more quickly on a good answer.

How to evaluate a search engine?

I am a student carrying out a study to enhance a search engine's existing algorithm.
I want to know how I can evaluate the search engine - which I have improved - to quantify how much the algorithm was improved.
How should I go about comparing the old and new algorithm?
Thanks
This is normally done by creating a test suite of questions and then evaluating how well the search response answers those questions. In some cases the responses should be unambiguous (if you type slashdot into a search engine you expect to get slashdot.org as your top hit), so you can think of these as a class of hard queries with 'correct' answers.
Most other queries are inherently subjective. To minimise bias you should ask multiple users to try your search engine and rate the results for comparison with the original. Here is an example of a computer science paper that does something similar:
http://www.cs.uic.edu/~liub/searchEval/SearchEngineEvaluation.htm
Regarding specific comparison of the algorithms, although obvious, what you measure depends on what you're interested in knowing. For example, you can compare efficiency in computation, memory usage, crawling overhead or time to return results. If you are trying to produce very specific behaviour, such as running specialist searches (e.g. a literature search) for certain parameters, then you need to explicitly test this.
Heuristics for relevance are also a useful check. For example, when someone uses search terms that are probably 'programming-related', do you tend to get more results from stackoverflow.com? Would your search results be better if you did? If you are providing a set of trust weightings for specific sites or domains (e.g. rating .edu or .ac.uk domains as more trustworthy for technical results), then you need to test the effectiveness of these weightings.
First, let me start out by saying, kudos to you for attempting to apply traditional research methods to search engine results. Many SEO's have done this before you, and generally keep this to themselves as sharing "amazing findings" usually means you can't exploit or have the upper hand anymore, this said I will share as best I can some pointers and things to look for.
Identify what part of the algorithm are you trying to improve?
Different searches execute different algorithms.
Broad Searches
For instance in a broad term search, engines tend to return a variety of results. Common part of these results include
News Feeds
Products
Images
Blog Posts
Local Results (this is based off of a Geo IP lookup).
Which of these result types are thrown into the mix can vary based on the word.
Example: Cats returns images of cats, and news, Shoes returns local shopping for shoes. (this is based on my IP in Chicago on October 6th)
The goal in returning results for a broad term is to provide a little bit of everything for everyone so that everyone is happy.
Regional Modifiers
Generally any time a regional term is attached to a search, it will modify the results greatly. If you search for "Chicago web design" because the word Chicago is attached, the results will start with a top 10 regional results. (these are the one liners to the right of the map), after than 10 listings will display in general "result fashion".
The results in the "top ten local" tend to be drastically different than those in organic listing below. This is because the local results (from google maps) rely on entirely different data for ranking.
Example: Having a phone number on your website with the area code of Chicago will help in local results... but NOT in the general results. Same with address, yellow book listing and so forth.
Results Speed
Currently (as of 10/06/09) Google is beta testing "caffeine" The main highlight of this engine build is that it returns results in almost half the time. Although you may not consider Google to be slow now... speeding up an algorithm is important when millions of searches happen every hour.
Reducing Spam Listings
We have all found experienced a search that was riddled with spam. The new release of Google Caffeine http://www2.sandbox.google.com/ is a good example. Over the last 10+ one of the largest battles online has been between Search Engine Optimizers and Search Engines. Gaming google (and other engines) is highly profitable and what Google spends most of its time combating.
A good example is again the new release of Google Caffeine. So far my research and also a few others in the SEO field are finding this to be the first build in over 5 years to put more weight on Onsite elements (such as keywords, internal site linking, etc) than prior builds. Before this, each "release" seemed to favor inbound links more and more... this is the first to take a step back towards "content".
Ways to test an algorythm.
Compare two builds of the same engine. This is currently possible by comparing Caffeine (see link above or google, google caffeine) and the current Google.
Compare local results in different regions. Try finding search terms like web design, that return local results without a local keyword modifier. Then, use a proxy (found via google) to search from various locations. You will want to make sure you know the proxies location (find a site on google that will tell your your IP address geo IP zipcode or city). Then you can see how different regions return different results.
Warning... DONT pick the term locksmith... and be wary of any terms that when returning result, have LOTS of spammy listings.. Google local is fairly easy to spam, especially in competitive markets.
Do as mentioned in a prior answer, compare how many "click backs" users require to find a result. You should know, currently, no major engines use "bounce rates" as indicators of sites accuracy. This is PROBABLY because it would be EASY to make it look like your result has a bounce rate in the 4-8% range without actually having one that low... in other words it would be easy to game.
Track how many search variations users use on average for a given term in order to find the result that is desired. This is a good indicator of how well an engine is smart guessing the query type (as mentioned WAY up in this answer).
**Disclaimer. These views are based on my industry experience as of October 6th, 2009. One thing about SEO and engines is they change EVERY DAY. Google could release Caffeine tomorrow, and this would change a lot... that said, this is the fun of SEO research!
Cheers
In order to evaluate something, you have to define what you expect from it. This will help to define how to measure it.
Then, you'll be able to measure the improvement.
Concerning a search engine, I guess that you might be able to measure itsability to find things, its accuracy in returning what is relevant.
It's an interesting challenge.
I don't think you will find a final mathematical solution if that is your goal. In order to rate a given algorithm, you require standards and goals that must be accomplished.
What is your baseline to compare against?
What do you classify as "improved"?
What do you consider a "successful search"?
How large is your test group?
What are your tests?
For example, if your goal is to improve the process of page ranking then decide if you are judging the efficiency of the algorithm or the accuracy. Judging efficiency means that you time your code for a consistent large data set and record results. You would then work with your algorithm to improve the time.
If your goal is to improve accuracy then you need to define what is "inaccurate". If you search for "Cup" you can only say that the first site provided is the "best" if you yourself can accurately define what is the best answer for "Cup".
My suggestion for you would be to narrow the scope of your experiment. Define one or two qualities of a search engine that you feel need refinement and work towards improving them.
In the comments you've said "I have heard about a way to measure the quality of the search engines by counting how many time a user need to click a back button before finding the link he wants , but I can use this technique because you need users to test your search engine and that is a headache itself". Well, if you put your engine on the web for free for a few days and advertise a little you will probably get at least a couple dozen tries. Provide these users with the old or new version at random, and measure those clicks.
Other possibility: assume Google is by definition perfect, and compare your answer to its for certain queries. (Maybe sum of distance of your top ten links to their counterparts at Google, for example: if your second link is google's twelveth link, that's 10 distance). That's a huge assumption, but far easier to implement.
Information scientists commonly use precision and recall as two competing measures of quality for an information retrieval system (like a search engine).
So you could measure your search engine's performance relative to Google's by, for example, counting the number of relevant results in the top 10 (call that precision) and the number of important pages for that query that you think should have been in the top 10 but weren't (call that recall).
You'll still need to compare the results from each search engine by hand on some set of queries, but at least you'll have one metric to evaluate them on. And the balance of these two is important too: otherwise you can trivially get perfect precision by not returning any results or perfect recall by returning every page on the web as a result.
The Wikipedia article on precision and recall is quite good (and defines the F-measure which takes into account both).
I have had to test a search engine professionally. This is what I did.
The search included fuzzy logic. The user would type into a web page "Kari Trigger", and the search engine would retrieve entries like "Gary Trager", "Trager, C", "Corey Trager", etc, each with a score from 0->100 so that I could rank them from most likely to least likely.
First, I re-architected the code so that it could be executed removed from the web page, in a batch mode using a big file of search queries as input. For each line in the input file, the batch mode would write out the top search result and its score. I harvested thousands of actual search queries from our production system and ran them thru the batch setup in order to establish a baseline.
From then on, each time I modified the search logic, I would run the batch again and then diff the new results against the baseline. I also wrote tools to make it easier to see the interesting parts of the diff. For example, I didn't really care if the old logic returned "Corey Trager" as an 82 and the new logic returned it as an 83, so my tools would filter those out.
I could not have accomplished as much by hand-crafting test cases. I just wouldn't have had the imagination and insight to have created good test data. The real world data was so much richer.
So, to recap:
1) Create a mechanism that lets you diff the results of running new logic versus the results of prior logic.
2) Test with lots of realistic data.
3) Create tools that help you work with the diff, filtering out the noise, enhancing the signal.
You have to clearly identify positive and negative qualities such as how fast one gets the answer they are seeking or how many "wrong" answers they get on the way there. Is it an improvement if the right answer is #5 but the results are returned 20 times faster? Things like that will be different for each application. The correct answer may be more important in a corporate knowledge base search but a fast answer may be needed for a phone support application.
Without parameters no test can be claimed to be a victory.
Embrace the fact that the quality of search results are ultimately subjective. You should have multiple scoring algorithms for your comparison: The old one, the new one, and a few control groups (e.g. scoring by URI length or page size or some similarly intentionally broken concept). Now pick a bunch of queries that exercise your algorithms, say a hundred or so. Let's say you end up with 4 algorithms total. Make a 4x5 table, displaying the first 5 results of a query across each algorithm. (You could do top ten, but the first five are way more important.) Be sure to randomize which algorithm appears in each column. Then plop a human in front of this thing and have them pick which of the 4 result sets they like best. Repeat across your entire query set. Repeat for as many more humans as you can stand. This should give you a fair comparison based on total wins for each algorithm.
http://www.bingandgoogle.com/
Create an app like this that compares and extracts the data. Then run a test with 50 different things you need to look for and then compare with the results you want.

In terms of today's technology, are these meaningful concerns about data size?

We're adding extra login information to an existing database record on the order of 3.85KB per login.
There are two concerns about this:
1) Is this too much on-the-wire data added per login?
2) Is this too much extra data we're storing in the database per login?
Given todays technology, are these valid concerns?
Background:
We don't have concrete usage figures, but we average about 5,000 logins per month. We hope to scale to larger customers, howerver, still in the 10's of 1000's per month, not 1000's per second.
In the US (our market) broadband has 60% market adoption.
Assuming you have ~80,000 logins per month, you would be adding ~ 3.75 GB per YEAR to your database table.
If you are using a decent RDBMS like MySQL, PostgreSQL, SQLServer, Oracle, etc... this is a laughable amount of data and traffic. After several years, you might want to start looking at archiving some of it. But by then, who knows what the application will look like?
It's always important to consider how you are going to be querying this data, so that you don't run into performance bottlenecks. Without those details, I cannot comment very usefully on that aspect.
But to answer your concern, do not be concerned. Just always keep thinking ahead.
How many users do you have? How often do they have to log in? Are they likely to be on fast connections, or damp pieces of string? Do you mean you're really adding 3.85K per time someone logs in, or per user account? How long do you have to store the data? What benefit does it give you? How does it compare with the amount of data you're already storing? (i.e. is most of your data going to be due to this new part, or will it be a drop in the ocean?)
In short - this is a very context-sensitive question :)
Given that storage and hardware are SOOO cheap these days (relatively speaking of course) this should not be a concern. Obviously if you need the data then you need the data! You can use replication to several locations so that the added data doesn't need to move over the wire as far (such as a server on the west coast and the east coast). You can manage your data by separating it by state to minimize the size of your tables (similar to what banks do, choose state as part of the login process so that they look to the right data store). You can use horizontal partitioning to minimize the number or records per table to keep your queries speedy. Lots of ways to keep large data optimized. Also check into Lucene if you plan to do lots of reads to this data.
In terms of today's average server technology it's not a problem. In terms of your server technology it could be a problem. You need to provide more info.
In terms of storage, this is peanuts, although you want to eventually archive or throw out old data.
In terms of network (?) traffic, this is not much on the server end, but it will affect the speed at which your website appears to load and function for a good portion of customers. Although many have broadband, someone somewhere will try it on edge or modem or while using bit torrent heavily, your site will appear slow or malfunction altogether and you'll get loud complaints all over the web. Does it matter? If your users really need your service, they can surely wait, if you are developing new twitter the page load time increase is hardly acceptable.