I have a workflow consisting of 2 subworkflows.
params.reads = "$projectDir/data/raw/reads/*_{1,2}.fastq.gz"
params.kaiju_db = "$projectDir/data/kaijudb/viruses/kaiju_db_viruses.fmi"
params.kaiju_names = "$projectDir/data/kaijudb/viruses/names.dmp"
params.kaiju_nodes = "$projectDir/data/kaijudb/viruses/nodes.dmp"
workflow subworkflow_A {
take:
reads // channel: [ val(sample), [ reads ] ]
main:
count_reads(reads)
trim_reads(reads)
emit:
trimmed_reads = process2.out.reads // channel: [ val(sample), [ trimmed_reads ] ]
}
workflow subworkflow_B {
take:
reads // channel: [ val(sample), [ reads ] ]
db // channel: /path/to/kaiju/db.fmi
nodes // channel: /path/to/kaiju/nodes/file
names // channel: /path/to/kaiju/names/file
main:
taxonomic_classification(reads, nodes, db)
kaiju_to_krona(taxonomic_classification.out, nodes, names)
krona_import_text(kaiju_to_krona.out)
kaiju_to_table(taxonomic_classification.out, nodes, names)
}
workflow main {
ch_reads = Channel.fromFilePairs("$params.reads", checkIfExists:true)
subworkflow_A(ch_reads)
ch_db = Channel.fromPath("$params.kaiju_db", checkIfExists: true)
ch_nodes = Channel.fromPath("$params.kaiju_nodes", checkIfExists: true)
ch_names = Channel.fromPath("$params.kaiju_names", checkIfExists: true)
ch_trimmed_reads = subworkflow_A.out.trimmed_reads
subworkflow_B(ch_processed_reads, ch_db, ch_nodes, ch_names)
}
The input for params.reads is a directory like,
reads/
├── test_sample1_1.fastq.gz
├── test_sample1_2.fastq.gz
├── test_sample2_1.fastq.gz
└── test_sample2_2.fastq.gz
The input for subworkflow_A, ch_reads is:
[test_sample1, [~project/data/raw/reads/test_sample1_1.fastq.gz, ~project/data/raw/reads/test_sample1_2.fastq.gz]]
[test_sample2, [~project/data/raw/reads/test_sample2_1.fastq.gz, ~project/data/raw/reads/test_sample2_2.fastq.gz]]
subworkflow_A then emits the following channel into ch_trimmed_reads
[test_sample1, [~project/work/51/240e81f0a30e7e4c1d932abfe97502/test_sample1.trim.R1.fq.gz, ~project/work/51/240e81f0a30e7e4c1d932abfe97502/test_sample1.trim.R2.fq.gz]]
[test_sample2, [~project/work/work/b2/d38399833f3adf11d4e8c6d85ec293/test_sample2.trim.R1.fq.gz, ~project/work/b2/d38399833f3adf11d4e8c6d85ec293/test_sample2.trim.R2.fq.gz]]
For some reason, subworkflow_B only runs the first sample test_sample1, and not the second sample test_sample1 when I want to run it over both samples.
Note that a value channel is implicitly created by a process when it is invoked with a simple value. This means you can just pass in a plain file object. For example:
workflow main {
ch_reads = Channel.fromFilePairs( params.reads, checkIfExists:true )
db = file( params.kaiju_db )
nodes = file( params.kaiju_nodes )
names = file( params.kaiju_names )
subworkflow_B( ch_reads, db, nodes, names )
}
Most of the time, what you want is one queue channel and one or more value channels when your process requires multiple input channels:
When two or more channels are declared as process inputs, the process
waits until there is a complete input configuration, i.e. until it
receives a value from each input channel. When this condition is
satisfied, the process consumes a value from each channel and launches
a new task, repeating this logic until one or more channels are empty.
As a result, channel values are consumed sequentially and any empty
channel will cause the process to wait, even if the other channels
have values.
A different semantic is applied when using a value channel. This kind
of channel is created by the Channel.value factory method or
implicitly when a process is invoked with an argument that is not a
channel. By definition, a value channel is bound to a single value and
it can be read an unlimited number of times without consuming its
content. Therefore, when mixing a value channel with one or more
(queue) channels, it does not affect the process termination because
the underlying value is applied repeatedly.
Related
Consider the following pipeline:
example_gen = tfx.components.ImportExampleGen(input_base=_dataset_folder)
statistics_gen = tfx.components.StatisticsGen(examples=example_gen.outputs['examples'])
schema_gen = tfx.components.SchemaGen(
statistics=statistics_gen.outputs['statistics'],
infer_feature_shape=True)
transform = tfx.components.Transform(
examples=example_gen.outputs['examples'],
schema=schema_gen.outputs['schema'],
module_file=os.path.abspath('preprocessing_fn.py'))
_trainer_module_file = 'run_fn.py'
trainer = tfx.components.Trainer(
module_file=os.path.abspath(_trainer_module_file),
examples=transform.outputs['transformed_examples'],
transform_graph=transform.outputs['transform_graph'],
schema=schema_gen.outputs['schema'],
train_args=tfx.proto.TrainArgs(num_steps=10),
eval_args=tfx.proto.EvalArgs(num_steps=6),)
pusher = tfx.components.Pusher(
model=trainer.outputs['model'],
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=_serving_model_dir)
)
)
components = [
example_gen,
statistics_gen,
schema_gen,
transform,
trainer,
pusher,
]
_pipeline_data_folder = './simple_pipeline_data'
pipeline = tfx.dsl.Pipeline(
pipeline_name='simple_pipeline',
pipeline_root=_pipeline_data_folder,
metadata_connection_config=tfx.orchestration.metadata.sqlite_metadata_connection_config(
f'{_pipeline_data_folder}/metadata.db'),
components=components)
tfx.orchestration.LocalDagRunner().run(pipeline)
Now, let's assume that once the pipeline is down, I would like to do something with the artifacts. I know I can query the ML Metadata like this:
import ml_metadata as mlmd
connection_config = pipeline.metadata_connection_config
store = mlmd.MetadataStore(connection_config)
print(store.get_artifact_types())
But this way, I have no idea which IDs belong to the current pipeline. Sure, I can assume that the largest IDs represent the current pipeline artifacts but that's not going to be a practical approach in production when multiple executions might try to work with the same metadata store concurrently.
So, the question is how can I figure out the artifact IDs that were just created by the current execution?
[UPDATE]
To clarify the problem, consider the following partial solution:
def get_latest_artifact(metadata_connection_config, pipeline_name: str, component_name: str, type_name: str):
with Metadata(metadata_connection_config) as metadata:
context = metadata.store.get_context_by_type_and_name('node', f'{pipeline_name}.{component_name}')
artifacts = metadata.store.get_artifacts_by_context(context.id)
artifact_type = metadata.store.get_artifact_type(type_name)
latest_artifact = max([a for a in artifacts if a.type_id == artifact_type.id],
key=lambda a: a.last_update_time_since_epoch)
artifact = types.Artifact(artifact_type)
artifact.set_mlmd_artifact(latest_artifact)
return artifact
sqlite_path = './pipeline_data/metadata.db'
metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(sqlite_path)
examples_artifact = get_latest_artifact(metadata_connection_config, 'simple_pipeline',
'SchemaGen', 'Schema')
Using get_latest_artifact function, I can get the latest artifact of a specific type from a specific pipeline. This will work even if two pipelines (with different names) create new artifacts concurrently. But it will fail when I try to extract the artifact of the "just finished" pipeline if multiple instances of the same pipeline are making changes to the store concurrently. That's because the function takes in the pipeline name as an input argument (as opposed to some pipeline unique ID).
I'm looking for a solution that works no matter how many different (or the same) pipelines work with the same store concurrently. At this point, I'm not sure if this can be done with MlMD. And if it cannot be done at the moment, I consider that a missed feature, a very crucial one.
OK, this is the solution I found. When defining the pipeline's components, you should use .with_id() method and give the component a custom ID. That way you can find it later on.
Here's an example. Let's say that I want to find the schema generated as part of the recently executed pipeline.
schema_gen = tfx.components.SchemaGen(
statistics=statistics_gen.outputs['statistics'],
infer_feature_shape=True).with_id('some_unique_id')
Then, the same function I defined above can be used like this:
def get_latest_artifact(metadata_connection_config, pipeline_name: str, component_name: str, type_name: str):
with Metadata(metadata_connection_config) as metadata:
context = metadata.store.get_context_by_type_and_name('node', f'{pipeline_name}.{component_name}')
artifacts = metadata.store.get_artifacts_by_context(context.id)
artifact_type = metadata.store.get_artifact_type(type_name)
latest_artifact = max([a for a in artifacts if a.type_id == artifact_type.id],
key=lambda a: a.last_update_time_since_epoch)
artifact = types.Artifact(artifact_type)
artifact.set_mlmd_artifact(latest_artifact)
return artifact
sqlite_path = './pipeline_data/metadata.db'
metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(sqlite_path)
examples_artifact = get_latest_artifact(metadata_connection_config, 'simple_pipeline',
'some_unique_id', 'Schema')
Once your TFX pipeline completes the run, you can query the ML metadata using below code.
connection_config = interactive_context.metadata_connection_config
store = mlmd.MetadataStore(connection_config)
# All TFX artifacts are stored in the base directory
base_dir = connection_config.sqlite.filename_uri.split('metadata.sqlite')[0]
Once metadata is fetched, you can use below helper functions to view data from MD store. The display_types() function queries the list of all its stored ArtifactTypes. Then display_artifacts() function list all artifacts for given artifact type and their uri. The display_properties() function will give execution properties for given artifact.
Please refer MLMD tutorial for detailed implementation of below functions.
def display_types(types):
# Helper function to render dataframes for the artifact and execution types
table = {'id': [], 'name': []}
for a_type in types:
table['id'].append(a_type.id)
table['name'].append(a_type.name)
return pd.DataFrame(data=table)
def display_artifacts(store, artifacts):
# Helper function to render dataframes for the input artifacts
table = {'artifact id': [], 'type': [], 'uri': []}
for a in artifacts:
table['artifact id'].append(a.id)
artifact_type = store.get_artifact_types_by_id([a.type_id])[0]
table['type'].append(artifact_type.name)
table['uri'].append(a.uri.replace(base_dir, './'))
return pd.DataFrame(data=table)
def display_properties(store, node):
# Helper function to render dataframes for artifact and execution properties
table = {'property': [], 'value': []}
for k, v in node.properties.items():
table['property'].append(k)
table['value'].append(
v.string_value if v.HasField('string_value') else v.int_value)
for k, v in node.custom_properties.items():
table['property'].append(k)
table['value'].append(
v.string_value if v.HasField('string_value') else v.int_value)
return pd.DataFrame(data=table)
Example code to get the latest pushed model execution properties.
# get all artifacts with ArtifactType as PusherModel
pushed_models = store.get_artifacts_by_type("PushedModel")
# get the latest pushed model
pushed_model = pushed_models[-1]
# get execution properties for latest pushed model
display_properties(store, pushed_model)
I work at a place where scalding writes are augmented with a specific API to track dataset meta data. When converting from normal writes to these special writes, there are some intricacies with respect to Key/Value, TSV/CSV, Thrift ... datasets. I would like to compare the binary file is the same prior to conversion and after conversion to the special API.
Given I cannot provide the specific api for the metadata-inclusive writes, I only ask how can I write a unit test for .write method on a TypedPipe?
implicit val timeZone: TimeZone = DateOps.UTC
implicit val dateParser: DateParser = DateParser.default
implicit def flowDef: FlowDef = new FlowDef()
implicit def mode: Mode = Local(true)
val fileStrPath = root + "/test"
println("writing data to " + fileStrPath)
TypedPipe
.from(Seq[Long](1, 2, 3, 4, 5))
// .map((x: Long) => { println(x.toString); System.out.flush(); x })
.write(TypedTsv[Long](fileStrPath))
.forceToDisk
The above doesn't seem to write anything to local (OSX) disk.
So I wonder if I need to use a MiniDFSCluster something like this:
def setUpTempFolder: String = {
val tempFolder = new TemporaryFolder
tempFolder.create()
tempFolder.getRoot.getAbsolutePath
}
val root: String = setUpTempFolder
println(s"root = $root")
val tempDir = Files.createTempDirectory(setUpTempFolder).toFile
val hdfsCluster: MiniDFSCluster = {
val configuration = new Configuration()
configuration.set(MiniDFSCluster.HDFS_MINIDFS_BASEDIR, tempDir.getAbsolutePath)
configuration.set("io.compression.codecs", classOf[LzopCodec].getName)
new MiniDFSCluster.Builder(configuration)
.manageNameDfsDirs(true)
.manageDataDfsDirs(true)
.format(true)
.build()
}
hdfsCluster.waitClusterUp()
val fs: DistributedFileSystem = hdfsCluster.getFileSystem
val rootPath = new Path(root)
fs.mkdirs(rootPath)
However, my attempts to get this MiniCluster to work haven't panned out either - somehow I need to link the MiniCluster with the Scalding write.
Note: The Scalding JobTest framework for unit testing isn't going to work due actual data written is sometimes wrapped in bijection codec or setup with case class wrappers prior to the writes made by the metadata-inclusive writes APIs.
Any ideas how I can write a local file (without using the Scalding REPL) with either Scalding alone or a MiniCluster? (If using the later, I need a hint how to read the file.)
Answering ... There is an example of how to use a mini cluster for exactly reading and writing to HDFS. I will be able to cross read with my different writes and examine them. Here it is in the tests for scalding's TypedParquet type
HadoopPlatformJobTest is an extension for JobTest that uses a MiniCluster.
With some hand-waiving on detail in the link, the bulk of the code is this:
"TypedParquetTuple" should {
"read and write correctly" in {
import com.twitter.scalding.parquet.tuple.TestValues._
def toMap[T](i: Iterable[T]): Map[T, Int] = i.groupBy(identity).mapValues(_.size)
HadoopPlatformJobTest(new WriteToTypedParquetTupleJob(_), cluster)
.arg("output", "output1")
.sink[SampleClassB](TypedParquet[SampleClassB](Seq("output1"))) {
toMap(_) shouldBe toMap(values)
}
.run()
HadoopPlatformJobTest(new ReadWithFilterPredicateJob(_), cluster)
.arg("input", "output1")
.arg("output", "output2")
.sink[Boolean]("output2")(toMap(_) shouldBe toMap(values.filter(_.string == "B1").map(_.a.bool)))
.run()
}
}
I've been struggling to identify why a nextflow (v20.10.00) process is not using all the items in a channel. I want the process to run for each sample bam file (10 in total) and for each chromosome (3 in total).
Here is the creation of the channels and the process:
ref_genome = file( params.RefGen, checkIfExists: true )
ref_dir = ref_genome.getParent()
ref_name = ref_genome.getBaseName()
ref_dict = file( "${ref_dir}/${ref_name}.dict", checkIfExists: true )
ref_index = file( "${ref_dir}/${ref_name}.*.fai", checkIfExists: true )
// Handles reading in data if the previous step is skipped
if( params.Skip_BP ){
Channel
.fromFilePairs("${params.ProcBamDir}/*{bam,bai}") { file -> file.name.replaceAll(/.bam|.bai$/,'') }
.ifEmpty { error "No bams found in ${params.ProcBamDir}" }
.map { ID, files -> tuple(ID, files[0], files[1]) }
.set { processed_bams }
}
// Setting up the chromosome channel
if( params.Chroms == "" ){
// Defaulting to using all chromosomes
chromosomes_ch = Channel
.from("AgamP4_2L", "AgamP4_2R", "AgamP4_3L", "AgamP4_3R", "AgamP4_X", "AgamP4_Y_unplaced", "AgamP4_UNKN")
println "No chromosomes specified, using all major chromosomes: AgamP4_2L, AgamP4_2R, AgamP4_3L, AgamP4_3R, AgamP4_X, AgamP4_Y_unplaced, AgamP4_UNKN"
} else {
// User option to choose which chromosome will be used
// This worked with the following syntax nextflow run testing.nf --profile imperial --Chroms "AgamP4_3R,AgamP4_2L"
chrs = params.Chroms.split(",")
chromosomes_ch = Channel
.from( chrs )
println "User defined chromosomes set: ${params.Chroms}"
}
process DNA_HCG {
errorStrategy { sleep(Math.pow(2, task.attempt) * 600 as long); return 'retry' }
maxRetries 3
maxForks params.HCG_Forks
tag { SampleID+"-"+chrom }
executor = 'pbspro'
clusterOptions = "-lselect=1:ncpus=${params.HCG_threads}:mem=${params.HCG_memory}gb:mpiprocs=1:ompthreads=${params.HCG_threads} -lwalltime=${params.HCG_walltime}:00:00"
publishDir(
path: "${params.HCDir}",
mode: 'copy',
)
input:
each chrom from chromosomes_ch
set SampleID, path(bam), path(bai) from processed_bams
path ref_genome
path ref_dict
path ref_index
output:
tuple chrom, path("${SampleID}-${chrom}.vcf") into HCG_ch
path("${SampleID}-${chrom}.vcf.idx") into idx_ch
beforeScript 'module load anaconda3/personal; source activate NF_GATK'
script:
"""
if [ ! -d tmp ]; then mkdir tmp; fi
taskset -c 0-${params.HCG_threads} gatk --java-options \"-Xmx${params.HCG_memory}G -XX:+UseParallelGC -XX:ParallelGCThreads=${params.HCG_threads}\" HaplotypeCaller \\
--tmp-dir tmp/ \\
--pair-hmm-implementation AVX_LOGLESS_CACHING_OMP \\
--native-pair-hmm-threads ${params.HCG_threads} \\
-ERC GVCF \\
-L ${chrom} \\
-R ${ref_genome} \\
-I ${bam} \\
-O ${SampleID}-${chrom}.vcf ${params.GVCF_args}
"""
}
But for reasons I cannot figure out, nextflow only creates 3 jobs: [d8/45499b] process > DNA_HCG (0_wt5_BP-CM029350.1) [ 0%] 0 of 3
I thought maybe it was because it only took the first sample and then one process for each chromosome. Though I doubted this since the code works for a different reference genome correctly. Regardless, I adjusted the input channels:
processed_bams
.combine(chromosomes_ch)
.set { HCG_in }
and
input:
set SampleID, path(bam), path(bai), chrom from HCG_in
But this resulted in only a single job being created: [6e/78b070] process > DNA_HCG (0_wt10_BP-CM029350.1) [ 0%] 0 of 1
Confusingly, when i use HCG_in.view() there are 30 items. And to further confuse me the correct number of jobs comes from the following code:
chrs = params.Chroms.split(",")
chromosomes_ch = Channel
.from(chrs)
Channel
.fromFilePairs("${params.ProcBamDir}/*{bam,bai}") { file -> file.name.replaceAll(/.bam|.bai$/,'') }
.ifEmpty { error "No bams found in ${params.ProcBamDir}" }
.map { ID, files -> tuple(ID, files[0], files[1]) }
.set { processed_bams }
process HCG {
executor 'local'
input:
each chrom from chromosomes_ch
set SampleID, path(bam), path(bai) from processed_bams
//set SampleID, path(bam), path(bai), chrom from HCG_in
script:
"""
echo "${SampleID} - ${chrom}"
"""
}
Output: [75/c1c25a] process > HCG (27) [100%] 30 of 30 ✔
I'm hoping I've just missed something obvious, but I cannot see it at the moment. Thanks in advance for the help.
Issues like this almost always involve the use of multiple input channels:
When two or more channels are declared as process inputs, the process
stops until there’s a complete input configuration ie. it receives an
input value from all the channels declared as input.
Your initial assessment was correct. However, the reason only three processes were run (i.e. one sample for each of the three chromosomes), is because this line (probably) returned a list (i.e. a java LinkedList) containing a single element, and lists behave like queue channels:
ref_index = file( "${ref_dir}/${ref_name}.*.fai", checkIfExists: true )
You might have expected this to return a UnixPath. Ultimately, the solution is to ensure ref_index is value channel.
We are on: akka-stream-experimental_2.11 1.0.
Inspired by the example
We wrote a TCP receiver as follows:
def bind(address: String, port: Int, target: ActorRef)
(implicit system: ActorSystem, actorMaterializer: ActorMaterializer): Future[ServerBinding] = {
val sink = Sink.foreach[Tcp.IncomingConnection] { conn =>
val serverFlow = Flow[ByteString]
.via(Framing.delimiter(ByteString("\n"), maximumFrameLength = 256, allowTruncation = true))
.map(message => {
target ? new Message(message); ByteString.empty
})
conn handleWith serverFlow
}
val connections = Tcp().bind(address, port)
connections.to(sink).run()
}
However, our intention was to have the receiver not respond at all and only sink the message. (The TCP message publisher does not care about response ).
Is it even possible? to not respond at all since akka.stream.scaladsl.Tcp.IncomingConnection takes a flow of type: Flow[ByteString, ByteString, Unit]
If yes, some guidance will be much appreciated. Thanks in advance.
One attempt as follows passes my unit tests but not sure if its the best idea:
def bind(address: String, port: Int, target: ActorRef)
(implicit system: ActorSystem, actorMaterializer: ActorMaterializer): Future[ServerBinding] = {
val sink = Sink.foreach[Tcp.IncomingConnection] { conn =>
val targetSubscriber = ActorSubscriber[Message](system.actorOf(Props(new TargetSubscriber(target))))
val targetSink = Flow[ByteString]
.via(Framing.delimiter(ByteString("\n"), maximumFrameLength = 256, allowTruncation = true))
.map(Message(_))
.to(Sink(targetSubscriber))
conn.flow.to(targetSink).runWith(Source(Promise().future))
}
val connections = Tcp().bind(address, port)
connections.to(sink).run()
}
You are on the right track. To keep the possibility to close the connection at some point you may want to keep the promise and complete it later on. Once completed with an element this element published by the source. However, as you don't want any element to be published on the connection, you can use drop(1) to make sure the source will never emit any element.
Here's an updated version of your example (untested):
val promise = Promise[ByteString]()
// this source will complete when the promise is fulfilled
// or it will complete with an error if the promise is completed with an error
val completionSource = Source(promise.future).drop(1)
completionSource // only used to complete later
.via(conn.flow) // I reordered the flow for better readability (arguably)
.runWith(targetSink)
// to close the connection later complete the promise:
def closeConnection() = promise.success(ByteString.empty) // dummy element, will be dropped
// alternatively to fail the connection later, complete with an error
def failConnection() = promise.failure(new RuntimeException)
How can I make two independent action inside one function in Elm? Is there any pattern or explicit function?
Generally speaking I'm not sure how to implement ajax data loading inside Elm Architecture.
For example I'd like to make Http.get and return modified argument function like this
fetchCustomers model =
Http.get parseCustomers "/customers" `andThen` setCustomers
{ model | fetchingCustomers <- True }
TL;DR
You do so by returning both in a tuple. Then you split the signal from your update in foldp, put the model part in the view function and put the tasks in a port to execute. This is alluded to in the Architecture post at the end under One Last Pattern.
Longer answer
Since you link to the Elm Architecture, let me link to that too, but in particular the last part: One Last Pattern.
What you want to do here is part of the "update" of your program, where you not only update your model but also do something else on the side. Therefore you do not just return the new model, but also the extra thing you want to do (in this case an Http request):
fetchCustomers model =
( { model | fetchingCustomers <- True }
, Http.get parseCustomers "/customers" `andThen` setCustomers
)
Instead of using StartApp like the architecture page does, you can paste in the start function from the package. Now you have access to the mailbox where the actions are coming from, so you can pass it to your update so you can send your Http results there too. And you can split the tuple that you're returning from the update function to actually execute the tasks:
start app =
let
actions =
Signal.mailbox Nothing
address =
Signal.forwardTo actions.address Just
model =
Signal.foldp
(\(Just action) (model,_) -> app.update actions action model)
-- ignore task: ^ ^^^ ^^^^^^^^:add mailbox
app.model
actions.signal
in
(Signal.map (fst >> app.view address) model, Signal.map snd model)
-- ^ ^^^^^^^ :split model: ^^^^^^^^^^^^^^^^^^^^^^^
fetchCustomers actions model =
( { model | fetchingCustomers <- True }
, Http.get parseCustomers "/customers"
`andThen` (SetCustomers >> Signal.send actions.address)
-- use mailbox to send Http results as an input action again
)
-- larger update function you probably have
update actions action model = case action of
-- ...
SetCustomers cust -> setCustomers cust
-- ...
-- fetchCustomers actions model
(output, tasks) = start { model: model, view: view, update: update }
-- task execution:
port httpGets = tasks
-- output your view
main = output
You can find more examples of doing Http on the website under "tasks".