Overriding method in separate instantiated class - kotlin

There are 2 classes inherited from parent:
abstract class Parent{
abstract fun prepare()
abstract fun act()
}
class Child1:Parent(){
fun prepare()
fun act()
}
class Child2:Parent(){
fun prepare()
fun act()
}
I need to modify only method act() just to perform some action before it and run it after:
class Modify (parent:Parent):parent{
override fun act(){
...//modification
parent.act() //from Child1 or Child2 depends
}
}
class Modify1 (parent:Parent):parent{}
class Modify2 (parent:Parent):parent{}
The idea is to have several modificators and use them arbitrarily both for modified and not modified instances along with using several serial modificators:
val modifiedChild1:Parent = Modify1 ( Modify3( Child1() ) )
val modifiedChild2:Parent = Modify1 ( Child2() )
val notModified1:Parent = Child1 ()
Please advise if this concept is correct and how to implement it. Thanks.
the only way I found: is to add an interface as listener.
But in that case, it is not possible to use Modify() as a function and possibility perform several modifications.

If you're interested in modifying the public functions of Parent, you can use the Decorator pattern to create a wrapper class and override the functions. For example:
// Copyright 2023 Google LLC.
// SPDX-License-Identifier: Apache-2.0
abstract class Parent {
abstract fun prepare()
abstract fun act()
}
class ParentDecorator(val parent: Parent): Parent() {
override fun prepare() {
// modification
parent.prepare()
// modification
}
override fun act() {
// modification
parent.act()
// modification
}
}
class Child: Parent() { ... }
val child = Child()
val decoratedChild = ParentDecorator(child)
decoratedChild.prepare()
// will call the modifications around the call to the
// nested child instance
This only works if the parent is abstract, open, or is an interface, and only affects the public functions that you override in the Decorator.
Note - this example is a tad awkward - we're creating an instance of Parent to override all of its functions and wrap another instance of Parent, delegating the real function to that wrapped instance. It would be much better to make Parent an interface if you want to create a Decorator. For example:
// Copyright 2023 Google LLC.
// SPDX-License-Identifier: Apache-2.0
interface Stuff {
fun prepare()
fun act()
}
class StuffDecorator(val realStuff: Stuff): Stuff {
override fun prepare() {
// modification
realStuff.prepare()
// modification
}
override fun act() {
// modification
realStuff.act()
// modification
}
}
class Child: Stuff { ... }
// could extend another class that implements Stuff
val child = Child()
val decoratedChild = StuffDecorator(child)
decoratedChild.prepare()
// will call the modifications around the call to the
// nested child instance
However, if you're stuck with an existing open/abstract Parent class, this is the best you can do)
If you want to do this is non-public functions, #cyberbrain's mention of AspectJ is more the way to go (but I'm not sure that can work with Kotlin - I see some mentions, such as https://github.com/serpro69/kotlin-aspectj-maven-example/blob/master/README.md, but no idea if that actually works).

Related

Sealed classes generics

I have this scenario where I have a super abstract class that emits different types of events using Kotlin sealed classes.
These events are modeled as follows.
sealed class BaseEvent {
object ConnectionStarted : BaseEvent()
object ConnectionStopped : BaseEvent()
}
sealed class LegacyEvent : BaseEvent() {
object TextChanged : LegacyEvent()
object TextCleared : LegacyEvent()
}
sealed class AdvancedEvent : BaseEvent() {
object ButtonClick : AdvancedEvent()
object ButtonLongClick : AdvancedEvent()
}
And here are the classes that emit these events
abstract class BaseViewModel<E : BaseEvent> {
private fun startConnection() {
emit(BaseEvent.ConnectionStarted) // <-- Error
}
fun emit(event: E){
//...
}
}
class LegacyBaskan : BaseViewModel<LegacyEvent>() {
fun textChanged() {
emit(LegacyEvent.TextChanged) // <-- Works
}
}
class AdvancedBaskan : BaseViewModel<AdvancedEvent>() {
fun buttonClicked() {
emit(AdvancedEvent.ButtonClick) // <-- Works
}
}
Here, it only works for the subclass and I can emit any event in the LegacyEvent or AdvancedEvent in their associated classes. However, for the BaseBaskan class, I can't emit the events from the BaseEvent although I stated that the generic type E must extend the BaseEvent.
I need each subclass to have access to its own events as well as the superclass events, but not the other subclasses' events.
How can I still emit events from BaseEvent in the base class, while giving each class the access to emit its own events only?
Not sure if you're confused about why it's not letting you emit the item from the base class. Since E could be any subtype of BaseEvent, if your class could emit ConnectionStarted, then it would be violating its contract any time it is declared as a BaseViewModel<AnythingBesidesConnectionStarted>.
Only way I can think of to make this work is have both private and public versions of the emit function. You might have to change code elsewhere in your class that you haven't shown. If there's some function that returns E, you will have to change it so it returns BaseEvent.
abstract class BaseViewModel<E : BaseEvent> {
private fun startConnection() {
emitInternal(BaseEvent.ConnectionStarted)
}
private fun emitInternal(event: BaseEvent) {
//...
}
fun emit(event: E){
emitInternal(event)
}
}
You can't emit BaseEvent.ConnectionStarted in BaseViewModel (and other events as well) because E is not defined yet, so the type system can't be sure that you won't emit events of another subtype breaking generic type invariance.
Just add an overloaded private version, which accepts BaseEvent argument (you'll need some #JvmName annotation to make it compilable for JVM target):
abstract class BaseViewModel<E : BaseEvent> {
private fun startConnection() {
emit(BaseEvent.ConnectionStarted)
}
#JvmName("emitBaseEvent")
private fun emit(event: BaseEvent) {
//...
}
fun emit(event: E) {
emit(event as BaseEvent)
}
}
It looks like you need contravariance, which can be achieved using in. Assuming your base class only has methods such as emit that use type E as parameter type, not as return type, then:
abstract class BaseViewModel<in E : BaseEvent> {
See https://kotlinlang.org/docs/generics.html#use-site-variance-type-projections.

Allow function calls only in special context

I'm trying to write a class that only allows certain methods to be called in a lambda of one function.
Basically, I want to achieve similar behaviour to how you can only call suspend functions in a suspend context.
Right now the closest I can get is this.
class MyClass {
fun runCommands(block: CommandContext.() -> Unit) {
// do prep work
block.invoke(commandContext)
// do cleanup work
}
val commandContext = CommandContext()
inner class CommandContext {
fun commandFunc() {} // only callable from the lambda
}
}
The issues I'm having with this is I can't make CommandContext private so you could always make your own instance and run the command externally. It is also unnecessary for it to be instantiatable but I can't make an "inner object."
Any ideas on how to do this cleaner?
Outer scope should know that there is a commandFunc() method in CommandContext class (and that this class actually exists). That's why it can't be private. But you can encapsulate its implementation, effectively making it private, keeping public only its interface:
interface CommandContext {
fun commandFunc()
}
class MyClass {
fun runCommands(block: CommandContext.() -> Unit) {
// do prep work
block.invoke(CommandContextImpl)
// do cleanup work
}
private object CommandContextImpl : CommandContext {
override fun commandFunc() {} //actual implementation
}
}
//Usage:
fun main() {
MyClass().runCommands { commandFunc() }
}

How to call overriden function on super interface?

interface CrudRepo {
fun save()
fun saveAll()
}
interface CustomRepo : CrudRepo {
fun validate()
override fun save() {
validate()
saveAll() // can call saveAll, I need to call save on CrudRepo here
}
}
CrudRepo has a function save which doesn't do validation. I decide to write my own interface which extends CrudRepo and overrides the save method. In my own definition of save I want to validate and then call the save method on the CrudRepo.
What should I try ?
If you try using super, you'll get an error that says "abstract member cannot be accessed directly". This applies to interfaces and classes; you can't call bodyless abstract methods on super. Which means this doesn't compile:
interface CrudRepo {
fun save()
fun saveAll()
}
interface CustomRepo : CrudRepo {
fun validate()
override fun save() {
validate()
super.saveAll()
}
}
But change the CrudRepo interface to this:
interface CrudRepo {
fun save()
fun saveAll(){
}
}
And it does.
If you want an abstract example, here you go:
abstract class CrudRepo {
abstract fun save()
abstract fun saveAll()
}
class CustomRepo : CrudRepo() {
override fun saveAll() { }
override fun save() {
super.saveAll()
}
}
You'll get the same error message. This is because you cannot call unimplemented versions of a method. Also, let's take a look at inheritance.
interface CustomRepo : CrudRepo
class MyClass : CustomRepo
means MyClass is a child of both CrudRepo and CustomRepo. Both MyClass() as CustomRepo and MyClass() as CrudRepo would compile.
Now, what does this mean for your problem?
There is no save method in CrudRepo from the CustomRepo's point of view. It isn't implemented, and as such, you can't call it directly. Calling super.saveAll() as I showed above means call the saveAll method on my parent. super is a very strict keyword. However, saveAll() isn't overridden. You can call save, but you cannot call it on the super interface, because the super interface doesn't have a save method with a body. The last three words of that sentence are incredibly important here; since the method defined in the CrudBody interface doesn't have a body, you can't call it.
And, in addition, since you've overridden the method, any calls to it would result in recursion. If you do this:
override fun save(){
save()
}
it will call itself over and over, until it crashes. See What is a StackOverflowError?.
Now, if you have an actual class:
class CustomRepoImpl : CustomRepo{
override fun saveAll() {
}
override fun save() {
super.save()
}
override fun validate() {
}
}
notice how it calls super; it will now call the super method in CustomRepo. It's not required to, however.
And when you override save in CustomRepo, remember one thing: you're overriding a method of CrudRepo. Any child classes are no longer required to override it at all. The example implementation I had would compile without it. The reason saveAll works (without the super keyword) is because it is abstract, and doesn't reference the method in which it is called from. See the StackOverflowError link. If you call an overridden method, the one in the child class is called, unless the method is invoked on super.
And you can't call super on bodyless methods in a superclass or interface, because the language has no idea what you're pointing to, because there's nothing there.
TL;DR: you can't call the super method of an abstract/bodyless method. saveAll refers to the first implementation of the method, or the superclass if defined in a child. Calling save would result in a StackOverflowError.
I think Zoes answer contains everything you need to know about inheriting or overriding the save-method. If your CustomRepo wouldn't be an interface in the first place, you could use delegation, e.g.:
class CustomRepo(private val repo : CrudRepo) : CrudRepo by repo {
fun validate() {}
override fun save() {
validate()
repo.save()
}
}
So if you have any CrudRepo you just wrap it into your CustomRepo. That's it. All methods will be delegated to your CrudRepo by default and if you do not want that you just override the functions that need to work differently.
If you really want to keep your custom interface then I would probably do something as follows:
interface ValidatedCrudRepo : CrudRepo {
fun validate()
/**
* Ensures that [validate] is called before the actual [save].
*/
override fun save()
}
class CustomRepo(private val repo : CrudRepo) : ValidatedCrudRepo, CrudRepo by repo {
override fun validate() {}
override fun save() {
validate()
repo.save()
}
}
So if anyone uses ValidatedCrudRepo it is ensured that the validate should be called before an actual save and actually also documented that way.

Is there a way to verify that a top-level function passed as a dependency to a class has been called during testing?

I have a class that receives a function allowing it to display things on the UI during a failure case. What's the best way that I can verify that the function is called in my test?
MyClass(private val uiPrinter: (String) -> Unit) {
fun foo() {
// do some stuff
uiPrinter("printing from foo!")
// do some more stuff
}
}
MyClassTest() {
val testUiPrinter: (String) -> Unit = { System.out.println(it) }
#Test
fun uiPrinterIsInvoked() {
val myClass = MyClass(testUiPrinter)
myClass.foo()
// can I verify that testUiPrinter has been invoked?
}
}
You may want to check out the Model-View-Presenter architecture. Its purpose is to hide the Android framework behind an abstract View interface which a purely Java Presenter can interact with. In your example:
interface ViewInterface {
fun printError(error: String)
}
class MyPresenter(private val view: ViewInterface) {
fun foo() {
// do some stuff (testable stuff)
view.printError("Printing from foo()!")
// do some more (testable) stuff
}
}
class MyPresenterTest() { // Test using Mockito to mock the abstract view
private val view = mock(ViewInterface::class.java)
private val presenter = MyPresenter(view)
#Test
fun printsError() {
// set up preconditions
presenter.foo()
verify(view).printError("Printing from foo()!")
}
}
Your concrete view will generally be an Android Activity, Fragment, or View which implements the view interface. Notice MyPresenter only expects the abstract view and does not need knowledge of the framework-dependent operations.
class MyActivity : Activity(), ViewInterface {
// ...
override fun printError(error: String) {
textView.text = error // For example
}
// ...
}
This can be achieved by mocking the higher-order function as higher-order functions are objects unless inlined.
#Mock
val testUiPrinter: (String) -> Unit
#Test
fun uiPrinterIsInvoked() {
val myClass = MyClass(testUiPrinter)
myClass.foo()
verify(testUiPrinter).invoke("Printing from foo!")
}

Idiomatic way of logging in Kotlin

Kotlin doesn't have the same notion of static fields as used in Java. In Java, the generally accepted way of doing logging is:
public class Foo {
private static final Logger LOG = LoggerFactory.getLogger(Foo.class);
}
Question is what is the idiomatic way of performing logging in Kotlin?
In the majority of mature Kotlin code, you will find one of these patterns below. The approach using Property Delegates takes advantage of the power of Kotlin to produce the smallest code.
Note: the code here is for java.util.Logging but the same theory applies to any logging library
Static-like (common, equivalent of your Java code in the question)
If you cannot trust in the performance of that hash lookup inside the logging system, you can get similar behavior to your Java code by using a companion object which can hold an instance and feel like a static to you.
class MyClass {
companion object {
val LOG = Logger.getLogger(MyClass::class.java.name)
}
fun foo() {
LOG.warning("Hello from MyClass")
}
}
creating output:
Dec 26, 2015 11:28:32 AM org.stackoverflow.kotlin.test.MyClass foo
INFO: Hello from MyClass
More on companion objects here: Companion Objects ... Also note that in the sample above MyClass::class.java gets the instance of type Class<MyClass> for the logger, whereas this.javaClass would get the instance of type Class<MyClass.Companion>.
Per Instance of a Class (common)
But, there is really no reason to avoid calling and getting a logger at the instance level. The idiomatic Java way you mentioned is outdated and based on fear of performance, whereas the logger per class is already cached by almost any reasonable logging system on the planet. Just create a member to hold the logger object.
class MyClass {
val LOG = Logger.getLogger(this.javaClass.name)
fun foo() {
LOG.warning("Hello from MyClass")
}
}
creating output:
Dec 26, 2015 11:28:44 AM org.stackoverflow.kotlin.test.MyClass foo
INFO: Hello from MyClass
You can performance test both per instance and per class variations and see if there is a realistic difference for most apps.
Property Delegates (common, most elegant)
Another approach, which is suggested by #Jire in another answer, is to create a property delegate, which you can then use to do the logic uniformly in any other class that you want. There is a simpler way to do this since Kotlin provides a Lazy delegate already, we can just wrap it in a function. One trick here is that if we want to know the type of the class currently using the delegate, we make it an extension function on any class:
fun <R : Any> R.logger(): Lazy<Logger> {
return lazy { Logger.getLogger(unwrapCompanionClass(this.javaClass).name) }
}
// see code for unwrapCompanionClass() below in "Putting it all Together section"
This code also makes sure that if you use it in a Companion Object that the logger name will be the same as if you used it on the class itself. Now you can simply:
class Something {
val LOG by logger()
fun foo() {
LOG.info("Hello from Something")
}
}
for per class instance, or if you want it to be more static with one instance per class:
class SomethingElse {
companion object {
val LOG by logger()
}
fun foo() {
LOG.info("Hello from SomethingElse")
}
}
And your output from calling foo() on both of these classes would be:
Dec 26, 2015 11:30:55 AM org.stackoverflow.kotlin.test.Something foo
INFO: Hello from Something
Dec 26, 2015 11:30:55 AM org.stackoverflow.kotlin.test.SomethingElse foo
INFO: Hello from SomethingElse
Extension Functions (uncommon in this case because of "pollution" of Any namespace)
Kotlin has a few hidden tricks that let you make some of this code even smaller. You can create extension functions on classes and therefore give them additional functionality. One suggestion in the comments above was to extend Any with a logger function. This can create noise anytime someone uses code-completion in their IDE in any class. But there is a secret benefit to extending Any or some other marker interface: you can imply that you are extending your own class and therefore detect the class you are within. Huh? To be less confusing, here is the code:
// extend any class with the ability to get a logger
fun <T: Any> T.logger(): Logger {
return Logger.getLogger(unwrapCompanionClass(this.javaClass).name)
}
Now within a class (or companion object), I can simply call this extension on my own class:
class SomethingDifferent {
val LOG = logger()
fun foo() {
LOG.info("Hello from SomethingDifferent")
}
}
Producing output:
Dec 26, 2015 11:29:12 AM org.stackoverflow.kotlin.test.SomethingDifferent foo
INFO: Hello from SomethingDifferent
Basically, the code is seen as a call to extension Something.logger(). The problem is that the following could also be true creating "pollution" on other classes:
val LOG1 = "".logger()
val LOG2 = Date().logger()
val LOG3 = 123.logger()
Extension Functions on Marker Interface (not sure how common, but common model for "traits")
To make the use of extensions cleaner and reduce "pollution", you could use a marker interface to extend:
interface Loggable {}
fun Loggable.logger(): Logger {
return Logger.getLogger(unwrapCompanionClass(this.javaClass).name)
}
Or even make the method part of the interface with a default implementation:
interface Loggable {
public fun logger(): Logger {
return Logger.getLogger(unwrapCompanionClass(this.javaClass).name)
}
}
And use either of these variations in your class:
class MarkedClass: Loggable {
val LOG = logger()
}
Producing output:
Dec 26, 2015 11:41:01 AM org.stackoverflow.kotlin.test.MarkedClass foo
INFO: Hello from MarkedClass
If you wanted to force the creation of a uniform field to hold the logger, then while using this interface you could easily require the implementer to have a field such as LOG:
interface Loggable {
val LOG: Logger // abstract required field
public fun logger(): Logger {
return Logger.getLogger(unwrapCompanionClass(this.javaClass).name)
}
}
Now the implementer of the interface must look like this:
class MarkedClass: Loggable {
override val LOG: Logger = logger()
}
Of course, an abstract base class can do the same, having the option of both the interface and an abstract class implementing that interface allows flexibility and uniformity:
abstract class WithLogging: Loggable {
override val LOG: Logger = logger()
}
// using the logging from the base class
class MyClass1: WithLogging() {
// ... already has logging!
}
// providing own logging compatible with marker interface
class MyClass2: ImportantBaseClass(), Loggable {
// ... has logging that we can understand, but doesn't change my hierarchy
override val LOG: Logger = logger()
}
// providing logging from the base class via a companion object so our class hierarchy is not affected
class MyClass3: ImportantBaseClass() {
companion object : WithLogging() {
// we have the LOG property now!
}
}
Putting it All Together (A small helper library)
Here is a small helper library to make any of the options above easy to use. It is common in Kotlin to extend API's to make them more to your liking. Either in extension or top-level functions. Here is a mix to give you options for how to create loggers, and a sample showing all variations:
// Return logger for Java class, if companion object fix the name
fun <T: Any> logger(forClass: Class<T>): Logger {
return Logger.getLogger(unwrapCompanionClass(forClass).name)
}
// unwrap companion class to enclosing class given a Java Class
fun <T : Any> unwrapCompanionClass(ofClass: Class<T>): Class<*> {
return ofClass.enclosingClass?.takeIf {
ofClass.enclosingClass.kotlin.companionObject?.java == ofClass
} ?: ofClass
}
// unwrap companion class to enclosing class given a Kotlin Class
fun <T: Any> unwrapCompanionClass(ofClass: KClass<T>): KClass<*> {
return unwrapCompanionClass(ofClass.java).kotlin
}
// Return logger for Kotlin class
fun <T: Any> logger(forClass: KClass<T>): Logger {
return logger(forClass.java)
}
// return logger from extended class (or the enclosing class)
fun <T: Any> T.logger(): Logger {
return logger(this.javaClass)
}
// return a lazy logger property delegate for enclosing class
fun <R : Any> R.lazyLogger(): Lazy<Logger> {
return lazy { logger(this.javaClass) }
}
// return a logger property delegate for enclosing class
fun <R : Any> R.injectLogger(): Lazy<Logger> {
return lazyOf(logger(this.javaClass))
}
// marker interface and related extension (remove extension for Any.logger() in favour of this)
interface Loggable {}
fun Loggable.logger(): Logger = logger(this.javaClass)
// abstract base class to provide logging, intended for companion objects more than classes but works for either
abstract class WithLogging: Loggable {
val LOG = logger()
}
Pick whichever of those you want to keep, and here are all of the options in use:
class MixedBagOfTricks {
companion object {
val LOG1 by lazyLogger() // lazy delegate, 1 instance per class
val LOG2 by injectLogger() // immediate, 1 instance per class
val LOG3 = logger() // immediate, 1 instance per class
val LOG4 = logger(this.javaClass) // immediate, 1 instance per class
}
val LOG5 by lazyLogger() // lazy delegate, 1 per instance of class
val LOG6 by injectLogger() // immediate, 1 per instance of class
val LOG7 = logger() // immediate, 1 per instance of class
val LOG8 = logger(this.javaClass) // immediate, 1 instance per class
}
val LOG9 = logger(MixedBagOfTricks::class) // top level variable in package
// or alternative for marker interface in class
class MixedBagOfTricks : Loggable {
val LOG10 = logger()
}
// or alternative for marker interface in companion object of class
class MixedBagOfTricks {
companion object : Loggable {
val LOG11 = logger()
}
}
// or alternative for abstract base class for companion object of class
class MixedBagOfTricks {
companion object: WithLogging() {} // instance 12
fun foo() {
LOG.info("Hello from MixedBagOfTricks")
}
}
// or alternative for abstract base class for our actual class
class MixedBagOfTricks : WithLogging() { // instance 13
fun foo() {
LOG.info("Hello from MixedBagOfTricks")
}
}
All 13 instances of the loggers created in this sample will produce the same logger name, and output:
Dec 26, 2015 11:39:00 AM org.stackoverflow.kotlin.test.MixedBagOfTricks foo
INFO: Hello from MixedBagOfTricks
Note: The unwrapCompanionClass() method ensures that we do not generate a logger named after the companion object but rather the enclosing class. This is the current recommended way to find the class containing the companion object. Stripping "$Companion" from the name using removeSuffix() does not work since companion objects can be given custom names.
Have a look at the kotlin-logging library.
It allows logging like that:
private val logger = KotlinLogging.logger {}
class Foo {
logger.info{"wohoooo $wohoooo"}
}
Or like that:
class FooWithLogging {
companion object: KLogging()
fun bar() {
logger.info{"wohoooo $wohoooo"}
}
}
I also wrote a blog post comparing it to AnkoLogger: Logging in Kotlin & Android: AnkoLogger vs kotlin-logging
Disclaimer: I am the maintainer of that library.
Edit: kotlin-logging now has multiplatform support: https://github.com/MicroUtils/kotlin-logging/wiki/Multiplatform-support
KISS: For Java Teams Migrating to Kotlin
If you don't mind providing the class name on each instantiation of the logger (just like java), you can keep it simple by defining this as a top-level function somewhere in your project:
import org.slf4j.LoggerFactory
inline fun <reified T:Any> logger() = LoggerFactory.getLogger(T::class.java)
This uses a Kotlin reified type parameter.
Now, you can use this as follows:
class SomeClass {
// or within a companion object for one-instance-per-class
val log = logger<SomeClass>()
...
}
This approach is super-simple and close to the java equivalent, but just adds some syntactical sugar.
Next Step: Extensions or Delegates
I personally prefer going one step further and using the extensions or delegates approach. This is nicely summarized in #JaysonMinard's answer, but here is the TL;DR for the "Delegate" approach with the log4j2 API (UPDATE: no need to write this code manually any more, as it has been released as an official module of the log4j2 project, see below). Since log4j2, unlike slf4j, supports logging with Supplier's, I've also added a delegate to make using these methods simpler.
import org.apache.logging.log4j.LogManager
import org.apache.logging.log4j.Logger
import org.apache.logging.log4j.util.Supplier
import kotlin.reflect.companionObject
/**
* An adapter to allow cleaner syntax when calling a logger with a Kotlin lambda. Otherwise calling the
* method with a lambda logs the lambda itself, and not its evaluation. We specify the Lambda SAM type as a log4j2 `Supplier`
* to avoid this. Since we are using the log4j2 api here, this does not evaluate the lambda if the level
* is not enabled.
*/
class FunctionalLogger(val log: Logger): Logger by log {
inline fun debug(crossinline supplier: () -> String) {
log.debug(Supplier { supplier.invoke() })
}
inline fun debug(t: Throwable, crossinline supplier: () -> String) {
log.debug(Supplier { supplier.invoke() }, t)
}
inline fun info(crossinline supplier: () -> String) {
log.info(Supplier { supplier.invoke() })
}
inline fun info(t: Throwable, crossinline supplier: () -> String) {
log.info(Supplier { supplier.invoke() }, t)
}
inline fun warn(crossinline supplier: () -> String) {
log.warn(Supplier { supplier.invoke() })
}
inline fun warn(t: Throwable, crossinline supplier: () -> String) {
log.warn(Supplier { supplier.invoke() }, t)
}
inline fun error(crossinline supplier: () -> String) {
log.error(Supplier { supplier.invoke() })
}
inline fun error(t: Throwable, crossinline supplier: () -> String) {
log.error(Supplier { supplier.invoke() }, t)
}
}
/**
* A delegate-based lazy logger instantiation. Use: `val log by logger()`.
*/
#Suppress("unused")
inline fun <reified T : Any> T.logger(): Lazy<FunctionalLogger> =
lazy { FunctionalLogger(LogManager.getLogger(unwrapCompanionClass(T::class.java))) }
// unwrap companion class to enclosing class given a Java Class
fun <T : Any> unwrapCompanionClass(ofClass: Class<T>): Class<*> {
return if (ofClass.enclosingClass != null && ofClass.enclosingClass.kotlin.companionObject?.java == ofClass) {
ofClass.enclosingClass
} else {
ofClass
}
}
Log4j2 Kotlin Logging API
Most of the previous section has been directly adapted to produce the Kotlin Logging API module, which is now an official part of Log4j2 (disclaimer: I am the primary author). You can download this directly from Apache, or via Maven Central.
Usage is basically as describe above, but the module supports both interface-based logger access, a logger extension function on Any for use where this is defined, and a named logger function for use where no this is defined (such as top-level functions).
As a good example of logging implementation I'd like to mention Anko which uses a special interface AnkoLogger which a class that needs logging should implement. Inside the interface there's code that generates a logging tag for the class. Logging is then done via extension functions which can be called inside the interace implementation without prefixes or even logger instance creation.
I don't think this is idiomatic, but it seems a good approach as it requires minimum code, just adding the interface to a class declaration, and you get logging with different tags for different classes.
The code below is basically AnkoLogger, simplified and rewritten for Android-agnostic usage.
First, there's an interface which behaves like a marker interface:
interface MyLogger {
val tag: String get() = javaClass.simpleName
}
It lets its implementation use the extensions functions for MyLogger inside their code just calling them on this. And it also contains logging tag.
Next, there is a general entry point for different logging methods:
private inline fun log(logger: MyLogger,
message: Any?,
throwable: Throwable?,
level: Int,
handler: (String, String) -> Unit,
throwableHandler: (String, String, Throwable) -> Unit
) {
val tag = logger.tag
if (isLoggingEnabled(tag, level)) {
val messageString = message?.toString() ?: "null"
if (throwable != null)
throwableHandler(tag, messageString, throwable)
else
handler(tag, messageString)
}
}
It will be called by logging methods. It gets a tag from MyLogger implementation, checks logging settings and then calls one of two handlers, the one with Throwable argument and the one without.
Then you can define as many logging methods as you like, in this way:
fun MyLogger.info(message: Any?, throwable: Throwable? = null) =
log(this, message, throwable, LoggingLevels.INFO,
{ tag, message -> println("INFO: $tag # $message") },
{ tag, message, thr ->
println("INFO: $tag # $message # $throwable");
thr.printStackTrace()
})
These are defined once for both logging just a message and logging a Throwable as well, this is done with optional throwable parameter.
The functions that are passed as handler and throwableHandler can be different for different logging methods, for example, they can write the log to file or upload it somewhere. isLoggingEnabled and LoggingLevels are omitted for brevity, but using them provides even more flexibility.
It allows for the following usage:
class MyClass : MyLogger {
fun myFun() {
info("Info message")
}
}
There is a small drawback: a logger object will be needed for logging in package-level functions:
private object MyPackageLog : MyLogger
fun myFun() {
MyPackageLog.info("Info message")
}
Would something like this work for you?
class LoggerDelegate {
private var logger: Logger? = null
operator fun getValue(thisRef: Any?, property: KProperty<*>): Logger {
if (logger == null) logger = Logger.getLogger(thisRef!!.javaClass.name)
return logger!!
}
}
fun logger() = LoggerDelegate()
class Foo { // (by the way, everything in Kotlin is public by default)
companion object { val logger by logger() }
}
Anko
You can use Anko library to do it. You would have code like below:
class MyActivity : Activity(), AnkoLogger {
private fun someMethod() {
info("This is my first app and it's awesome")
debug(1234)
warn("Warning")
}
}
kotlin-logging
kotlin-logging(Github project - kotlin-logging ) library allows you to write logging code like below:
class FooWithLogging {
companion object: KLogging()
fun bar() {
logger.info{"Item $item"}
}
}
StaticLog
or you can also use this small written in Kotlin library called StaticLog then your code would looks like:
Log.info("This is an info message")
Log.debug("This is a debug message")
Log.warn("This is a warning message","WithACustomTag")
Log.error("This is an error message with an additional Exception for output", "AndACustomTag", exception )
Log.logLevel = LogLevel.WARN
Log.info("This message will not be shown")\
The second solution might better if you would like to define an output format for logging method like:
Log.newFormat {
line(date("yyyy-MM-dd HH:mm:ss"), space, level, text("/"), tag, space(2), message, space(2), occurrence)
}
or use filters, for example:
Log.filterTag = "filterTag"
Log.info("This log will be filtered out", "otherTag")
Log.info("This log has the right tag", "filterTag")
timberkt
If you'd already used Jake Wharton's Timber logging library check timberkt.
This library builds on Timber with an API that's easier to use from Kotlin. Instead of using formatting parameters, you pass a lambda that is only evaluated if the message is logged.
Code example:
// Standard timber
Timber.d("%d %s", intVar + 3, stringFun())
// Kotlin extensions
Timber.d { "${intVar + 3} ${stringFun()}" }
// or
d { "${intVar + 3} ${stringFun()}" }
Check also: Logging in Kotlin & Android: AnkoLogger vs kotlin-logging
Hope it will help
That's what companion objects are for, in general: replacing static stuff.
What about an extension function on Class instead? That way you end up with:
public fun KClass.logger(): Logger = LoggerFactory.getLogger(this.java)
class SomeClass {
val LOG = SomeClass::class.logger()
}
Note - I've not tested this at all, so it might not be quite right.
First, you can add extension functions for logger creation.
inline fun <reified T : Any> getLogger() = LoggerFactory.getLogger(T::class.java)
fun <T : Any> T.getLogger() = LoggerFactory.getLogger(javaClass)
Then you will be able to create a logger using the following code.
private val logger1 = getLogger<SomeClass>()
private val logger2 = getLogger()
Second, you can define an interface that provides a logger and its mixin implementation.
interface LoggerAware {
val logger: Logger
}
class LoggerAwareMixin(containerClass: Class<*>) : LoggerAware {
override val logger: Logger = LoggerFactory.getLogger(containerClass)
}
inline fun <reified T : Any> loggerAware() = LoggerAwareMixin(T::class.java)
This interface can be used in the following way.
class SomeClass : LoggerAware by loggerAware<SomeClass>() {
// Now you can use a logger here.
}
create companion object and mark the appropriate fields with #JvmStatic annotation
There are many great answers here already, but all of them concern adding a logger to a class, but how would you do that to do logging in Top Level Functions?
This approach is generic and simple enough to work well in both classes, companion objects and Top Level Functions:
package nieldw.test
import org.apache.logging.log4j.LogManager
import org.apache.logging.log4j.Logger
import org.junit.jupiter.api.Test
fun logger(lambda: () -> Unit): Lazy<Logger> = lazy { LogManager.getLogger(getClassName(lambda.javaClass)) }
private fun <T : Any> getClassName(clazz: Class<T>): String = clazz.name.replace(Regex("""\$.*$"""), "")
val topLog by logger { }
class TopLevelLoggingTest {
val classLog by logger { }
#Test
fun `What is the javaClass?`() {
topLog.info("THIS IS IT")
classLog.info("THIS IS IT")
}
}
I have heard of no idiom in this regard.
The simpler the better, so I would use a top-level property
val logger = Logger.getLogger("package_name")
This practice serves well in Python, and as different as Kotlin and Python might appear, I believe they are quite similar in their "spirit" (speaking of idioms).
Slf4j example, same for others. This even works for creating package level logger
/**
* Get logger by current class name.
*/
fun getLogger(c: () -> Unit): Logger =
LoggerFactory.getLogger(c.javaClass.enclosingClass)
Usage:
val logger = getLogger { }
fun <R : Any> R.logger(): Lazy<Logger> = lazy {
LoggerFactory.getLogger((if (javaClass.kotlin.isCompanion) javaClass.enclosingClass else javaClass).name)
}
class Foo {
val logger by logger()
}
class Foo {
companion object {
val logger by logger()
}
}
This is still WIP (almost finished) so I'd like to share it:
https://github.com/leandronunes85/log-format-enforcer#kotlin-soon-to-come-in-version-14
The main goal of this library is to enforce a certain log style across a project. By having it generate Kotlin code I'm trying to address some of the issues mentioned in this question. With regards to the original question what I usually tend to do is to simply:
private val LOG = LogFormatEnforcer.loggerFor<Foo>()
class Foo {
}
You can simply build your own "library" of utilities. You don't need a large library for this task which will make your project heavier and complex.
For instance, you can use Kotlin Reflection to get the name, type and value of any class property.
First of all, make sure you have the meta-dependency settled in your build.gradle:
dependencies {
implementation "org.jetbrains.kotlin:kotlin-reflect:$kotlin_version"
}
Afterwards, you can simply copy and paste this code into your project:
import kotlin.reflect.full.declaredMemberProperties
class LogUtil {
companion object {
/**
* Receives an [instance] of a class.
* #return the name and value of any member property.
*/
fun classToString(instance: Any): String {
val sb = StringBuilder()
val clazz = instance.javaClass.kotlin
clazz.declaredMemberProperties.forEach {
sb.append("${it.name}: (${it.returnType}) ${it.get(instance)}, ")
}
return marshalObj(sb)
}
private fun marshalObj(sb: StringBuilder): String {
sb.insert(0, "{ ")
sb.setLength(sb.length - 2)
sb.append(" }")
return sb.toString()
}
}
}
Example of usage:
data class Actor(val id: Int, val name: String) {
override fun toString(): String {
return classToString(this)
}
}
For Kotlin Multiplaform logging I could not find a library that had all the features I needed so I ended up writing one. Please check out KmLogging. The features it implements is:
Uses platform specific logging on each platform: Log on Android, os_log on iOS, and console on JavaScript.
High performance. Only 1 boolean check when disabled. I like to put in lots of logging and want all of it turned off when release and do not want to pay much overhead for having lots of logging. Also, when logging is on it needs to be really performant.
Extensible. Need to be able add other loggers such as logging to Crashlytics, etc.
Each logger can log at a different level. For example, you may only want info and above going to Crashlytics and all other loggers disabled in production.
To use:
val log = logging()
log.i { "some message" }