PysimpleGUI: subplots - plotting graphs next to each other when some are deselected - matplotlib

I have a code where I plot several graphs using subplots. I have checkboxes where I can select/deselect in my main window which graph/data I want to plot. I wonder if it is possible when selecting e.g. graph 1, 3 & 4 and deselecting graph 2, if graph 3 & 4 can be plotted next to graph 1. In my code there is a gap between graph 1, 3 & 4.
if event == 'Plot Lithology':
fig1, ax = plt.subplots(figsize=(7, 5), dpi=100)
mng = plt.get_current_fig_manager()
mng.resize(*mng.window.maxsize())
ax1 = plt.subplot2grid((1, 7), (0, 0), rowspan=1, colspan=1)
ax2 = plt.subplot2grid((1, 7), (0, 1), rowspan=1, colspan=1)
ax3 = plt.subplot2grid((1, 7), (0, 2), rowspan=1, colspan=1)
ax4 = plt.subplot2grid((1, 7), (0, 3), rowspan=1, colspan=1, sharey=ax1)
ax5 = ax2.twiny()
ax6 = plt.subplot2grid((1, 7), (0, 4), rowspan=1, colspan=1, sharey=ax1)
ax7 = plt.subplot2grid((1, 7), (0, 5), rowspan=1, colspan=1, sharey=ax1)
canvas = FigureCanvasTkAgg(fig1, master=canvas_elem.TKCanvas)
canvas.draw()
.... # some more code .....
plt.show()
main_window.close()
# The ax are defined before the fig. as e.g.:
if values['litho']:
ax1.pcolormesh([0, 1], df_depth['Top_Depth'],
df_depth['Lithological Unit'][:-1].map(lit).to_numpy().reshape(-1, 1), cmap=cmap, vmin=1,
vmax=len(colors))
I tried using matplotlib.pyplot.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) but it gave me errors or just didn't do anything.
Thank you
If it is possible to plot graphs next to each other when deselecting them so that there is no gap between the other graphs. Which function I can use.

Related

how to read the shape of the numpy array after numpy stack

I am doing stack operation on two 2D array using numpy.
a = np.random.randint(1, 5, size=(4, 4))
b = np.random.randint(6, 10, size=(4, 4))
f = np.stack((a, b), axis=2)
I checked the shape of the f array.
f.shape
(4, 4, 2)
in the obtained shape (4, 4, 2), I would like to know what is first 4 represnts, second 4 represents and third element 2 reprents?

My ggplot includes geom_boxplot and geom_line, but it does not show the legend for the geom_line part. How can I add it please?

My ggplot includes geom_boxplot and geom_line, but it only shows the legend for the boxplot part but does not show the legend for the geom_line part. How can I add it please?
Note: The boxplot and the line were made from two different data sources, but shown in one graph.
I really need help with this please, thank you!
Here is the code:
library(ggnewscale)
bplot6 <- ggplot(seasonalmerge_neale1989) +
geom_boxplot(aes(x = date, y = values, group = date, fill = `Data Source`), width = 2, outlier.shape = NA,
lwd = 0.1) +
xlab("") +
ylab("") +
ylim(0,1.2) +
theme(
axis.text.x = element_text(family="serif", size = 8),
axis.text.y = element_text(family="serif", size = 8),
legend.title = element_text(family="serif", size = 8),
legend.text = element_text(family="serif", size = 8),
plot.title = element_text(family="serif", face="bold", size = 8, hjust = 0.5)) +
ggtitle("(f)")+
new_scale_color() +
geom_line(data=pointframe, aes(x= pointdate, y=pointvar), colour="gold", size=1, method = "lm", se=FALSE)
# +theme_classic()+scale_linetype_manual(values=bplot6, name="Data Source: ", labels=c("Ceres", "Landsat", "FAO"))+ theme(legend.position = "bottom")
bplot6
image of boxplots and line
A color must be specified inside an aesthetic in order for there to be a legend.
Moving colour inside aes() will build a legend automatically. Then we can adjust the labels and colors with scale_color_manual. Reproducing your code using iris data.
library(ggnewscale)
bplot6 <- ggplot(iris) +
geom_boxplot(aes(x = Petal.Length, y = Petal.Width , group = Species, fill = `Species`), width = 2, outlier.shape = NA,lwd = 0.1) +
xlab("") +
ylab("") +
#ylim(0,1.2) + you can use it as per your requirement
theme(
axis.text.x = element_text(family="serif", size = 8),
axis.text.y = element_text(family="serif", size = 8),
legend.title = element_text(family="serif", size = 8),
legend.text = element_text(family="serif", size = 8),
plot.title = element_text(family="serif", face="bold", size = 8, hjust = 0.5)) +
ggtitle("(f)")+
new_scale_color() +
geom_line(data=iris, aes(x= Sepal.Length, y=Sepal.Width, color="Gold"), size=1)+
scale_color_manual(name = "Colour", values = c("Gold" = "gold"))
# +theme_classic()+scale_linetype_manual(values=bplot6, name="Data Source: ", labels=c("Ceres", "Landsat", "FAO"))+ theme(legend.position = "bottom")
bplot6

Prevent 'darkgrid' ax2 gridlines in twinx() plot from disecting ax1 curve

I am having a problem with preventing grid lines in 'darkgrid' from disecting a line associated with the X1 axis when plotting a twinx() plot. I can "fix" the problem by not using 'darkgrid' or by passing an empty list to X2 (and lose the axis labels to - se last line), but I do want 'darkgrid' and x2 axis labels.
#Some imports
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style("darkgrid")
%matplotlib inline
#Data
d = np.arange(0, 1000, 100)
x1 = d/30 #redmodel
x2 = np.sqrt(d) #bluemodel
#Figure
fig = plt.figure(figsize = (8, 12))
sy1 = 'r-' #redmodel
sy2 = 'b-' #bluemodel
ax1 = fig.add_subplot(111)
ax2 = ax1.twiny()
_ = ax1.plot(x1, d, sy1)
_ = ax1.set_ylabel('D')
_ = ax1.set_ylim(0, 1000)
_ = ax1.set_xlabel('X1')
_ = ax1.set_xlim(0, 31)
_ = ax2.plot(x2, d, sy2)
_ = ax2.set_xlabel('X2')
_ = ax2.set_xlim(0, 31)
#_ = ax2.set_xticks([]) #Empty list passed to omit_xticks, otherwise ax2 gridines disect red line
As I was looking for solutions to this problem I stumbled upon the axes_grid1 toolkit collection of helper classes which has the twin() option (in addition to twinx and twiny) which may be the solution to my problem. But if you know of a simpler one please help me out.
The intent of your question is to answer as the challenge is to draw the grid lines of the x2 axis across the red line. I think you can simply set a standard for the grid lines of the x2 axis.
_ = ax2.grid(which='major', axis='x', zorder=1.0)

Input Layer in keras model class gives type-error with numpy array or tensors as input. What is the correct type then?

How to give input to the model if not a numpy array?
def createmodel():
myInput = Input(shape=(96, 96, 3))
x = ZeroPadding2D(padding=(3, 3), input_shape=(96, 96, 3))(myInput)
x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
x = BatchNormalization(axis=3, epsilon=0.00001, name='bn1')(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1))(x)
x = MaxPooling2D(pool_size=3, strides=2)(x)
x = Lambda(LRN2D, name='lrn_1')(x)
x = Conv2D(64, (1, 1), name='conv2')(x)
x = BatchNormalization(axis=3, epsilon=0.00001, name='bn2')(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1))(x)
x = Conv2D(192, (3, 3), name='conv3')(x)
x = BatchNormalization(axis=3, epsilon=0.00001, name='bn3')(x)
x = Activation('relu')(x)
x = Lambda(LRN2D, name='lrn_2')(x)
x = ZeroPadding2D(padding=(1, 1))(x)
x = MaxPooling2D(pool_size=3, strides=2)(x)
# Inception3a
inception_3a_3x3 = Conv2D(96, (1, 1), name='inception_3a_3x3_conv1')(x)
inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_3x3_bn1')(inception_3a_3x3)
inception_3a_3x3 = Activation('relu')(inception_3a_3x3)
inception_3a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3)
inception_3a_3x3 = Conv2D(128, (3, 3), name='inception_3a_3x3_conv2')(inception_3a_3x3)
inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_3x3_bn2')(inception_3a_3x3)
inception_3a_3x3 = Activation('relu')(inception_3a_3x3)
inception_3a_5x5 = Conv2D(16, (1, 1), name='inception_3a_5x5_conv1')(x)
inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_5x5_bn1')(inception_3a_5x5)
inception_3a_5x5 = Activation('relu')(inception_3a_5x5)
inception_3a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5)
inception_3a_5x5 = Conv2D(32, (5, 5), name='inception_3a_5x5_conv2')(inception_3a_5x5)
inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_5x5_bn2')(inception_3a_5x5)
inception_3a_5x5 = Activation('relu')(inception_3a_5x5)
inception_3a_pool = MaxPooling2D(pool_size=3, strides=2)(x)
inception_3a_pool = Conv2D(32, (1, 1), name='inception_3a_pool_conv')(inception_3a_pool)
inception_3a_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_pool_bn')(inception_3a_pool)
inception_3a_pool = Activation('relu')(inception_3a_pool)
inception_3a_pool = ZeroPadding2D(padding=((3, 4), (3, 4)))(inception_3a_pool)
inception_3a_1x1 = Conv2D(64, (1, 1), name='inception_3a_1x1_conv')(x)
inception_3a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_1x1_bn')(inception_3a_1x1)
inception_3a_1x1 = Activation('relu')(inception_3a_1x1)
inception_3a = concatenate([inception_3a_3x3, inception_3a_5x5, inception_3a_pool, inception_3a_1x1], axis=3)
# Inception3b
inception_3b_3x3 = Conv2D(96, (1, 1), name='inception_3b_3x3_conv1')(inception_3a)
inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_3x3_bn1')(inception_3b_3x3)
inception_3b_3x3 = Activation('relu')(inception_3b_3x3)
inception_3b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3)
inception_3b_3x3 = Conv2D(128, (3, 3), name='inception_3b_3x3_conv2')(inception_3b_3x3)
inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_3x3_bn2')(inception_3b_3x3)
inception_3b_3x3 = Activation('relu')(inception_3b_3x3)
inception_3b_5x5 = Conv2D(32, (1, 1), name='inception_3b_5x5_conv1')(inception_3a)
inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_5x5_bn1')(inception_3b_5x5)
inception_3b_5x5 = Activation('relu')(inception_3b_5x5)
inception_3b_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5)
inception_3b_5x5 = Conv2D(64, (5, 5), name='inception_3b_5x5_conv2')(inception_3b_5x5)
inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_5x5_bn2')(inception_3b_5x5)
inception_3b_5x5 = Activation('relu')(inception_3b_5x5)
inception_3b_pool = Lambda(lambda x: x**2, name='power2_3b')(inception_3a)
inception_3b_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3b_pool)
inception_3b_pool = Lambda(lambda x: x*9, name='mult9_3b')(inception_3b_pool)
inception_3b_pool = Lambda(lambda x: K.sqrt(x), name='sqrt_3b')(inception_3b_pool)
inception_3b_pool = Conv2D(64, (1, 1), name='inception_3b_pool_conv')(inception_3b_pool)
inception_3b_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_pool_bn')(inception_3b_pool)
inception_3b_pool = Activation('relu')(inception_3b_pool)
inception_3b_pool = ZeroPadding2D(padding=(4, 4))(inception_3b_pool)
inception_3b_1x1 = Conv2D(64, (1, 1), name='inception_3b_1x1_conv')(inception_3a)
inception_3b_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_1x1_bn')(inception_3b_1x1)
inception_3b_1x1 = Activation('relu')(inception_3b_1x1)
inception_3b = concatenate([inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1], axis=3)
# Inception3c
inception_3c_3x3 = utils.conv2d_bn(inception_3b,
layer='inception_3c_3x3',
cv1_out=128,
cv1_filter=(1, 1),
cv2_out=256,
cv2_filter=(3, 3),
cv2_strides=(2, 2),
padding=(1, 1))
inception_3c_5x5 = utils.conv2d_bn(inception_3b,
layer='inception_3c_5x5',
cv1_out=32,
cv1_filter=(1, 1),
cv2_out=64,
cv2_filter=(5, 5),
cv2_strides=(2, 2),
padding=(2, 2))
inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b)
inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_3c_pool)
inception_3c = concatenate([inception_3c_3x3, inception_3c_5x5, inception_3c_pool], axis=3)
#inception 4a
inception_4a_3x3 = utils.conv2d_bn(inception_3c,
layer='inception_4a_3x3',
cv1_out=96,
cv1_filter=(1, 1),
cv2_out=192,
cv2_filter=(3, 3),
cv2_strides=(1, 1),
padding=(1, 1))
inception_4a_5x5 = utils.conv2d_bn(inception_3c,
layer='inception_4a_5x5',
cv1_out=32,
cv1_filter=(1, 1),
cv2_out=64,
cv2_filter=(5, 5),
cv2_strides=(1, 1),
padding=(2, 2))
inception_4a_pool = Lambda(lambda x: x**2, name='power2_4a')(inception_3c)
inception_4a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_4a_pool)
inception_4a_pool = Lambda(lambda x: x*9, name='mult9_4a')(inception_4a_pool)
inception_4a_pool = Lambda(lambda x: K.sqrt(x), name='sqrt_4a')(inception_4a_pool)
inception_4a_pool = utils.conv2d_bn(inception_4a_pool,
layer='inception_4a_pool',
cv1_out=128,
cv1_filter=(1, 1),
padding=(2, 2))
inception_4a_1x1 = utils.conv2d_bn(inception_3c,
layer='inception_4a_1x1',
cv1_out=256,
cv1_filter=(1, 1))
inception_4a = concatenate([inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1], axis=3)
#inception4e
inception_4e_3x3 = utils.conv2d_bn(inception_4a,
layer='inception_4e_3x3',
cv1_out=160,
cv1_filter=(1, 1),
cv2_out=256,
cv2_filter=(3, 3),
cv2_strides=(2, 2),
padding=(1, 1))
inception_4e_5x5 = utils.conv2d_bn(inception_4a,
layer='inception_4e_5x5',
cv1_out=64,
cv1_filter=(1, 1),
cv2_out=128,
cv2_filter=(5, 5),
cv2_strides=(2, 2),
padding=(2, 2))
inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(inception_4a)
inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_4e_pool)
inception_4e = concatenate([inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3)
#inception5a
inception_5a_3x3 = utils.conv2d_bn(inception_4e,
layer='inception_5a_3x3',
cv1_out=96,
cv1_filter=(1, 1),
cv2_out=384,
cv2_filter=(3, 3),
cv2_strides=(1, 1),
padding=(1, 1))
inception_5a_pool = Lambda(lambda x: x**2, name='power2_5a')(inception_4e)
inception_5a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_5a_pool)
inception_5a_pool = Lambda(lambda x: x*9, name='mult9_5a')(inception_5a_pool)
inception_5a_pool = Lambda(lambda x: K.sqrt(x), name='sqrt_5a')(inception_5a_pool)
inception_5a_pool = utils.conv2d_bn(inception_5a_pool,
layer='inception_5a_pool',
cv1_out=96,
cv1_filter=(1, 1),
padding=(1, 1))
inception_5a_1x1 = utils.conv2d_bn(inception_4e,
layer='inception_5a_1x1',
cv1_out=256,
cv1_filter=(1, 1))
inception_5a = concatenate([inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3)
#inception_5b
inception_5b_3x3 = utils.conv2d_bn(inception_5a,
layer='inception_5b_3x3',
cv1_out=96,
cv1_filter=(1, 1),
cv2_out=384,
cv2_filter=(3, 3),
cv2_strides=(1, 1),
padding=(1, 1))
inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(inception_5a)
inception_5b_pool = utils.conv2d_bn(inception_5b_pool,
layer='inception_5b_pool',
cv1_out=96,
cv1_filter=(1, 1))
inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool)
inception_5b_1x1 = utils.conv2d_bn(inception_5a,
layer='inception_5b_1x1',
cv1_out=256,
cv1_filter=(1, 1))
inception_5b = concatenate([inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3)
av_pool = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(inception_5b)
reshape_layer = Flatten()(av_pool)
dense_layer = Dense(128, name='dense_layer')(reshape_layer)
norm_layer = Lambda(lambda x: K.l2_normalize(x, axis=1), name='norm_layer')(dense_layer)
# Final Model
return Model(inputs=[myInput], outputs=norm_layer)
Calling the above model as:
from keras import backend as K
from keras.models import Model
from keras.layers import Input, Layer
# Input for anchor, positive and negative images
in_a =np.random.randint(10,100,(1,96,96,3)).astype(float)
in_p =np.random.randint(10,100,(1,96,96,3)).astype(float)
in_n =np.random.randint(10,100,(1,96,96,3)).astype(float)
in_a_a =K.variable(value=in_a)
in_p_p =K.variable(value=in_p)
in_n_n =K.variable(value=in_n)
# # Output for anchor, positive and negative embedding vectors
# # The nn4_small model instance is shared (Siamese network)
emb_a = nn4_small2(in_a_a)
emb_p = nn4_small2(in_p_p)
emb_n = nn4_small2(in_n_n)
class TripletLossLayer(Layer):
def __init__(self, alpha, **kwargs):
self.alpha = alpha
super(TripletLossLayer, self).__init__(**kwargs)
def triplet_loss(self, inputs):
a, p, n = inputs
p_dist = K.sum(K.square(a-p), axis=-1)
n_dist = K.sum(K.square(a-n), axis=-1)
return K.sum(K.maximum(p_dist - n_dist + self.alpha, 0), axis=0)
def call(self, inputs):
loss = self.triplet_loss(inputs)
self.add_loss(loss)
return loss
# # # Layer that computes the triplet loss from anchor, positive and negative embedding vectors
triplet_loss_layer = TripletLossLayer(alpha=0.2, name='triplet_loss_layer')([emb_a, emb_p, emb_n])
# # # Model that can be trained with anchor, positive negative images
nn4_small2_train = Model([in_a, in_p, in_n], triplet_loss_layer)
Gives a type error on this line:
nn4_small2_train = Model([in_a, in_p, in_n], triplet_loss_layer)
c:\users\amark\anaconda3\envs\python3.5\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your ' + object_name +
90 ' call to the Keras 2 API: ' +signature,stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
c:\users\amark\anaconda3\envs\python3.5\lib\site-packages\keras\engine\topology.py in init(self, inputs, outputs, name)
1526
1527 # Check for redundancy in inputs.
-> 1528 if len(set(self.inputs)) != len(self.inputs):
1529 raise ValueError('The list of inputs passed to the model '
1530 'is redundant. '
TypeError: unhashable type: 'numpy.ndarray'
If I try to use the following:
nn4_small2_train = Model([in_a_a, in_p_p, in_n_n], triplet_loss_layer)
then the error raised is:
TypeError: Input tensors to a Model must be Keras tensors. Found: (missing Keras metadata)
You are passing numpy arrays as inputs to build a Model, and that is not right, you should pass instances of Input.
In your specific case, you are passing in_a, in_p, in_n but instead to build a Model you should be giving instances of Input, not K.variables (your in_a_a, in_p_p, in_n_n) or numpy arrays. Also it makes no sense to give values to the varibles. First you build the model symbolically, without any specific input values, and then you can train it or predict on it with real input values.

Data handling for matplotlib histogram with error bars

I've got a data set which is a list of tuples in python like this:
dataSet = [(6.1248199999999997, 27), (6.4400500000000003, 4), (5.9150600000000004, 1), (5.5388400000000004, 38), (5.82559, 1), (7.6892199999999997, 2), (6.9047799999999997, 1), (6.3516300000000001, 76), (6.5168699999999999, 1), (7.4382099999999998, 1), (5.4493299999999998, 1), (5.6254099999999996, 1), (6.3227700000000002, 1), (5.3321899999999998, 11), (6.7402300000000004, 4), (7.6701499999999996, 1), (5.4589400000000001, 3), (6.3089700000000004, 1), (6.5926099999999996, 2), (6.0003000000000002, 5), (5.9845800000000002, 1), (6.4967499999999996, 2), (6.51227, 6), (7.0302600000000002, 1), (5.7271200000000002, 49), (7.5311300000000001, 7), (5.9495800000000001, 2), (5.1487299999999996, 18), (5.7637099999999997, 6), (5.5144500000000001, 44), (6.7988499999999998, 1), (5.2578399999999998, 1)]
Where the first element of the tuple is an energy and the second a counter, how many sensor where affected.
I want to create a histogram to study the relation between the number of affected sensors and the energy. I'm pretty new to matplotlib (and python), but this is what I've done so far:
import math
import matplotlib.pyplot as plt
dataSet = [(6.1248199999999997, 27), (6.4400500000000003, 4), (5.9150600000000004, 1), (5.5388400000000004, 38), (5.82559, 1), (7.6892199999999997, 2), (6.9047799999999997, 1), (6.3516300000000001, 76), (6.5168699999999999, 1), (7.4382099999999998, 1), (5.4493299999999998, 1), (5.6254099999999996, 1), (6.3227700000000002, 1), (5.3321899999999998, 11), (6.7402300000000004, 4), (7.6701499999999996, 1), (5.4589400000000001, 3), (6.3089700000000004, 1), (6.5926099999999996, 2), (6.0003000000000002, 5), (5.9845800000000002, 1), (6.4967499999999996, 2), (6.51227, 6), (7.0302600000000002, 1), (5.7271200000000002, 49), (7.5311300000000001, 7), (5.9495800000000001, 2), (5.1487299999999996, 18), (5.7637099999999997, 6), (5.5144500000000001, 44), (6.7988499999999998, 1), (5.2578399999999998, 1)]
binWidth = .2
binnedDataSet = []
#create another list and append the "binning-value"
for item in dataSet:
binnedDataSet.append((item[0], item[1], math.floor(item[0]/binWidth)*binWidth))
energies, sensorHits, binnedEnergy = [[q[i] for q in binnedDataSet] for i in (0,1,2)]
plt.plot(binnedEnergy, sensorHits, 'ro')
plt.show()
This works so far (although it doesn't even look like a histogram ;-) but OK), but now I want to calculate the mean value for each bin and append some error bars.
What's the way to do it? I looked at histogram examples for matplotlib, but they all use one-dimensional data which will be counted, so you get a frequency spectrum… That's not really what I want.
I am somewhat confused by exactly what you are trying to do, but I think this (to first order) will do what I think you want:
bin_width = .2
bottom = 5.0
top = 8.0
binned_data = [0.0] * int(math.ceil(((top - bottom) / bin_width)))
binned_count = [0] * int(math.ceil(((top - bottom) / bin_width)))
n_bins = len(binned_data)
for E, cnt in dataSet:
if E < bottom or E > top:
print 'out of range'
continue
bin_id = int(math.floor(n_bins * (E - bottom) / (top - bottom)))
binned_data[bin_id] += cnt
binned_count[bin_id] += 1
binned_avergaed_data = [C_sum / hits if hits > 0 else 0 for C_sum, hits in zip(binned_data, binned_count)]
bin_edges = [bottom + j * bin_width for j in range(len(binned_data))]
plt.bar(bin_edges, binned_avergaed_data, width=bin_width)
I would also suggest looking into numpy, it would make this much simpler to write.