Save and resuse deeplearning model in Keras/Tensoflow [duplicate] - tensorflow

Setting
As already mentioned in the title, I got a problem with my custom loss function, when trying to load the saved model. My loss looks as follows:
def weighted_cross_entropy(weights):
weights = K.variable(weights)
def loss(y_true, y_pred):
y_pred = K.clip(y_pred, K.epsilon(), 1-K.epsilon())
loss = y_true * K.log(y_pred) * weights
loss = -K.sum(loss, -1)
return loss
return loss
weighted_loss = weighted_cross_entropy([0.1,0.9])
So during training, I used the weighted_loss function as loss function and everything worked well. When training is finished I save the model as .h5file with the standard model.save function from keras API.
Problem
When I am trying to load the model via
model = load_model(path,custom_objects={"weighted_loss":weighted_loss})
I am getting a ValueError telling me that the loss is unknown.
Error
The error message looks as follows:
File "...\predict.py", line 29, in my_script
"weighted_loss": weighted_loss})
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\engine\saving.py", line 419, in load_model
model = _deserialize_model(f, custom_objects, compile)
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\engine\saving.py", line 312, in _deserialize_model
sample_weight_mode=sample_weight_mode)
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\engine\training.py", line 139, in compile
loss_function = losses.get(loss)
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\losses.py", line 133, in get
return deserialize(identifier)
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\losses.py", line 114, in deserialize
printable_module_name='loss function')
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\utils\generic_utils.py", line 165, in deserialize_keras_object
':' + function_name)
ValueError: Unknown loss function:loss
Questions
How can I fix this problem? May it be possible that the reason for that is my wrapped loss definition? So keras doesn't know, how to handle the weights variable?

Your loss function's name is loss (i.e. def loss(y_true, y_pred):). Therefore, when loading back the model you need to specify 'loss' as its name:
model = load_model(path, custom_objects={'loss': weighted_loss})

For full examples demonstrating saving and loading Keras models with custom loss functions or models, please have a look at the following GitHub gist files:
Custom loss function defined using a wrapper:
https://gist.github.com/ashkan-abbasi66/a81fe4c4d588e2c187180d5bae734fde
Custom loss function defined by subclassing:
https://gist.github.com/ashkan-abbasi66/327efe2dffcf9788847d26de934ef7bd
Custom model:
https://gist.github.com/ashkan-abbasi66/d5a525d33600b220fa7b095f7762cb5b
Note:
I tested the above examples on Python 3.8 with Tensorflow 2.5.

Related

cannot save a Custom model in keras in .h5 [duplicate]

Setting
As already mentioned in the title, I got a problem with my custom loss function, when trying to load the saved model. My loss looks as follows:
def weighted_cross_entropy(weights):
weights = K.variable(weights)
def loss(y_true, y_pred):
y_pred = K.clip(y_pred, K.epsilon(), 1-K.epsilon())
loss = y_true * K.log(y_pred) * weights
loss = -K.sum(loss, -1)
return loss
return loss
weighted_loss = weighted_cross_entropy([0.1,0.9])
So during training, I used the weighted_loss function as loss function and everything worked well. When training is finished I save the model as .h5file with the standard model.save function from keras API.
Problem
When I am trying to load the model via
model = load_model(path,custom_objects={"weighted_loss":weighted_loss})
I am getting a ValueError telling me that the loss is unknown.
Error
The error message looks as follows:
File "...\predict.py", line 29, in my_script
"weighted_loss": weighted_loss})
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\engine\saving.py", line 419, in load_model
model = _deserialize_model(f, custom_objects, compile)
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\engine\saving.py", line 312, in _deserialize_model
sample_weight_mode=sample_weight_mode)
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\engine\training.py", line 139, in compile
loss_function = losses.get(loss)
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\losses.py", line 133, in get
return deserialize(identifier)
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\losses.py", line 114, in deserialize
printable_module_name='loss function')
File "...\Continuum\anaconda3\envs\processing\lib\site-packages\keras\utils\generic_utils.py", line 165, in deserialize_keras_object
':' + function_name)
ValueError: Unknown loss function:loss
Questions
How can I fix this problem? May it be possible that the reason for that is my wrapped loss definition? So keras doesn't know, how to handle the weights variable?
Your loss function's name is loss (i.e. def loss(y_true, y_pred):). Therefore, when loading back the model you need to specify 'loss' as its name:
model = load_model(path, custom_objects={'loss': weighted_loss})
For full examples demonstrating saving and loading Keras models with custom loss functions or models, please have a look at the following GitHub gist files:
Custom loss function defined using a wrapper:
https://gist.github.com/ashkan-abbasi66/a81fe4c4d588e2c187180d5bae734fde
Custom loss function defined by subclassing:
https://gist.github.com/ashkan-abbasi66/327efe2dffcf9788847d26de934ef7bd
Custom model:
https://gist.github.com/ashkan-abbasi66/d5a525d33600b220fa7b095f7762cb5b
Note:
I tested the above examples on Python 3.8 with Tensorflow 2.5.

How to access model inside custom Keras loss function?

def custom_correlation_loss(input_data, model):
def custom_loss(y_true, y_pred):
print(input_data)
model_prediction = model.predict(input_data)
print(model_prediction)
mse_loss = keras.losses.MSE(y_true, y_pred)
return mse_loss
return custom_loss
# Some model architecture "model"
model.load_weights('/content/drive/MyDrive/v2a_with_only_sex_combined_10k_model_survey_to_health_outcomes_LSTM.h5', by_name=True, skip_mismatch=True)
model.compile(optimizer = adam, loss = custom_correlation_loss(lambda_x), run_eagerly=True)
I actually wanted to compute some information with model inside custom loss function. When I try to access the model. I'm getting "Method requires being in cross-replica context, use get_replica_context().merge_call()"
Can someone let me know what the issue is or How do I access the model inside a custom loss function. So, the model I access is updated after every batch iteration.
RuntimeError: in user code:
File "<ipython-input-64-7b5fc945c2b5>", line 102, in custom_loss *
x = callback.on_train_batch_end(batch=0, logs={})
File "<ipython-input-42-3132770117f2>", line 42, in on_train_batch_end *
y_pred_batch = self.model.predict(x_batch_data.numpy())
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler **
raise e.with_traceback(filtered_tb) from None
RuntimeError: Method requires being in cross-replica context, use get_replica_context().merge_call()

Yolo v3 Loss Function fails when reloaded during load_model

I've been trying to save a Yolo v3 model and then Load it back from from an h5 file.
When saving I use the checkpoint (ModelCheckpoint) to save the model (with the parameter save_weights_only
set to False in order to save the WHOLE model).
However, when I tried to recover the same model by using the keras load_model function, I initially get a yolo_head function not found error.
I then tried to add the function as a parameter to the load function as in:
{"yolo_head":yolo_head}
Now, the issue becomes: "TypeError: list indices must be integers or slices, not list" because somehow, there's an error in the loss function (yolo_loss, line 444) when loaded dynamically.
Apparently, the binary code of the loss function is hard copied into the h5 file.
My question is this:
Is there a better/simpler YOLO loss function that I can use THAT DOES NOT refer to other functions or can be easily reloaded?
Thanks in advance,
EDIT 1: Additional Code Snippets,
Keras Checkpoint Callback definition:
checkpoint = ModelCheckpoint(
os.path.join(log_dir, "checkpoint.h5"),
monitor="val_loss",
save_weights_only=False,
save_best_only=True,
period=1,
)
Checkpoint added to model training:
history = model.fit_generator(
data_generator_wrapper(
lines[:num_train], batch_size, input_shape, anchors, num_classes
),
steps_per_epoch=max(1, num_train // batch_size),
validation_data=data_generator_wrapper(
lines[num_train:], batch_size, input_shape, anchors, num_classes
),
validation_steps=max(1, num_val // batch_size),
epochs=epoch1,
initial_epoch=0,
callbacks=[logging, checkpoint],
)
Trying to load the same file 'checkpoint.h5' after pre-training ended:
weights_path = os.path.join(log_dir, "checkpoint.h5")
model = load_model(weights_path, {"yolo_head":yolo_head, "tf":tf, "box_iou":box_iou,'<lambda>': lambda y_true, y_pred: y_pred})
Here is the error stack trace:
File "2_Training/Train_YOLO.py", line 206, in
model = load_model(weights_path, {"yolo_head":yolo_head, "tf":tf,
"box_iou":box_iou,'': lambda y_true, y_pred: y_pred})
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/engine/saving.py", line 419, in load_model
model = _deserialize_model(f, custom_objects, compile)
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/engine/saving.py", line 225, in _deserialize_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/engine/saving.py", line 458, in model_from_config
return deserialize(config, custom_objects=custom_objects)
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/layers/init.py", line 55, in deserialize
printable_module_name='layer')
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/utils/generic_utils.py", line 145, in deserialize_keras_object
list(custom_objects.items())))
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/engine/network.py", line 1032, in from_config
process_node(layer, node_data)
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/engine/network.py", line 991, in process_node
layer(unpack_singleton(input_tensors), **kwargs)
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/engine/base_layer.py", line 457, in call
output = self.call(inputs, **kwargs)
File "/Users/nkwedi/.pyenv/versions/3.7.5/lib/python3.7/site-packages/keras/layers/core.py", line 687, in call
return self.function(inputs, **arguments)
File "/Users/nkwedi/Documents/MyProjects/Eroscope/EyeDetectionYOLO/2_Training/src/keras_yolo3/yolo3/model.py", line 444, in yolo_loss
anchors[anchor_mask[l]],
TypeError: list indices must be integers or slices, not list
The Solution for me was to use a Cloud Based Training Platform like Google Collab.
Here's a link to a workable Collab Notebook with GPU enabled:
YOLO v3 Google Collab Tutorial

Unable to save model with tensorflow 2.0.0 beta1

I have tried all the options described in the documentation but none of them allowed me to save my model in tensorflow 2.0.0 beta1. I've also tried to upgrade to the (also unstable) TF2-RC but that ruined even the code I had working in beta so I quickly rolled back for now to beta.
See a minimal reproduction code below.
What I have tried:
model.save("mymodel.h5")
NotImplementedError: Saving the model to HDF5 format requires the
model to be a Functional model or a Sequential model. It does not work
for subclassed models, because such models are defined via the body of
a Python method, which isn't safely serializable. Consider saving to
the Tensorflow SavedModel format (by setting save_format="tf") or
using save_weights.
model.save("mymodel", format='tf')
ValueError: Model <main.CVAE object at 0x7f1cac2e7c50> cannot be
saved because the input shapes have not been set. Usually, input
shapes are automatically determined from calling .fit() or .predict().
To manually set the shapes, call model._set_inputs(inputs).
3.
model._set_input(input_sample)
model.save("mymodel", format='tf')
AssertionError: tf.saved_model.save is not supported inside a traced
#tf.function. Move the call to the outer eagerly-executed context.
And this is where I am stuck now because it gives me no reasonable hint whatsoever. That's because I am NOT calling the save() function from a #tf.function, I'm already calling it from the outermost scope possible. In fact, I have no #tf.function at all in this minimal reproduction script below and still getting the same error.
So I really have no idea how to save my model, I've tried every options and they all throw errors and provide no hints.
The minimal reproduction example below works fine if you set save_model=False and it reproduces the error when save_model=True.
It may seem unnecessary in this simplified auto-encoder code example to use a subclassed model but I have lots of custom functions added to it in my original VAE code that I need it for.
Code:
import tensorflow as tf
save_model = True
learning_rate = 1e-4
BATCH_SIZE = 100
TEST_BATCH_SIZE = 10
color_channels = 1
imsize = 28
(train_images, _), (test_images, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images[:5000, ::]
test_images = train_images[:1000, ::]
train_images = train_images.reshape(-1, imsize, imsize, 1).astype('float32')
test_images = test_images.reshape(-1, imsize, imsize, 1).astype('float32')
train_images /= 255.
test_images /= 255.
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).batch(BATCH_SIZE)
test_dataset = tf.data.Dataset.from_tensor_slices(test_images).batch(TEST_BATCH_SIZE)
class AE(tf.keras.Model):
def __init__(self):
super(AE, self).__init__()
self.network = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=(imsize, imsize, color_channels)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(50),
tf.keras.layers.Dense(imsize**2 * color_channels),
tf.keras.layers.Reshape(target_shape=(imsize, imsize, color_channels)),
])
def decode(self, input):
logits = self.network(input)
return logits
optimizer = tf.keras.optimizers.Adam(learning_rate)
model = AE()
def compute_loss(data):
logits = model.decode(data)
loss = tf.reduce_mean(tf.losses.mean_squared_error(logits, data))
return loss
def train_step(data):
with tf.GradientTape() as tape:
loss = compute_loss(data)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss, 0
def test_step(data):
loss = compute_loss(data)
return loss
input_shape_set = False
epoch = 0
epochs = 20
for epoch in range(epochs):
for train_x in train_dataset:
train_step(train_x)
if epoch % 1 == 0:
loss = 0.0
num_batches = 0
for test_x in test_dataset:
loss += test_step(test_x)
num_batches += 1
loss /= num_batches
print("Epoch: {}, Loss: {}".format(epoch, loss))
if save_model:
print("Saving model...")
if not input_shape_set:
# Note: Why set input shape manually and why here:
# 1. If I do not set input shape manually: ValueError: Model <main.CVAE object at 0x7f1cac2e7c50> cannot be saved because the input shapes have not been set. Usually, input shapes are automatically determined from calling .fit() or .predict(). To manually set the shapes, call model._set_inputs(inputs).
# 2. If I set input shape manually BEFORE the first actual train step, I get: RuntimeError: Attempting to capture an EagerTensor without building a function.
model._set_inputs(train_dataset.__iter__().next())
input_shape_set = True
# Note: Why choose tf format: model.save('MNIST/Models/model.h5') will return NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work for subclassed models, because such models are defined via the body of a Python method, which isn't safely serializable. Consider saving to the Tensorflow SavedModel format (by setting save_format="tf") or using save_weights.
model.save('MNIST/Models/model', save_format='tf')
I have tried the same minimal reproduction example in tensorflow-gpu 2.0.0-rc0 and the error was more revealing than what the beta version gave me. The error in RC says:
NotImplementedError: When subclassing the Model class, you should
implement a call method.
This got me read through https://www.tensorflow.org/beta/guide/keras/custom_layers_and_models where I found examples of how to do subclassing in TF2 in a way that allows saving. I was able to resolve the error and have the model saved by replacing my 'decode' method by 'call' in the above example (although this will be more complicated with my actual code where I had various methods defined for the class). This solved the error both in beta and in rc. Strangely, the training (or the saving) got also much faster in rc.
You should change two things:
Change the decode method to call, as you pointed out
As your model is of type Sequential, and not built inside the class, you want to call the save method on the self.network attribute of the model, i.e.,
model.network.save('mymodel.h5')
alternatively, to keep things more standard, you can implement this method inside the AE class, as follows:
def save(self, save_dir):
self.network.save(save_dir)
Cheers mate

Custom loss function: perform a model.predict on the data in y_pred

I am training a network to denoise images, for this I am using the CIFAR10 dataset. I am trying to generate a custom loss function so that the loss is mse / classification_accuracy.
Given that my network receives as input 32x32 (noisy) images and predicts 32x32 (denoised) images, I am assuming that y_pred and Y_true would be arrays of 32x32 images. Thus my custom loss functions looks like this:
def custom_loss():
def joint_optimized_loss(y_true, y_pred):
mse = K.mean(K.square(y_pred - y_true), axis=-1)
preds = classif_model.predict(y_pred)
correctPreds = 0
totPreds = 0
for pred in preds:
predictedClass = pred.index(max(pred))
totPreds += 1
if predictedClass == currentClass:
correctPreds += 1
classifAccuracy = correctPreds / totPreds
loss = mse / classifAccuracy
return loss
return joint_optimized_loss
myModel.compile(optimizer='adadelta', loss=custom_loss())
classif_model is a pre-trained model that classifies CIFAR10 images into one of the 10 classes. It receives an array of 32x32 images.
However when I run my code I get the following error:
Traceback (most recent call last):
File "myCode.py", line 94, in
myModel.compile(optimizer='adadelta', loss=custom_loss())
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 850, in compile
sample_weight, mask)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 450, in weighted
score_array = fn(y_true, y_pred)
File "myCode.py", line 57, in joint_optimized_loss
preds = classif_model.predict(y_pred)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/models.py",
line 913, in predict
return self.model.predict(x, batch_size=batch_size, verbose=verbose)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 1713, in predict
verbose=verbose, steps=steps)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 1260, in _predict_loop
batches = _make_batches(num_samples, batch_size)
File "/home/rvidalma/anaconda2/envs/tensorUpdated/lib/python2.7/site-packages/keras/engine/training.py",
line 374, in _make_batches
num_batches = int(np.ceil(size / float(batch_size)))
AttributeError: 'Dimension' object has no attribute 'ceil'
I think this has something to do with the fact that y_true and y_pred are both tensors that, before training, are empty thus classif_model.predict fails as it is expecting an array. However I am not sure on how to fix this...
I tried getting instead the value of y_pred using K.get_value(y_pred), but that gives me the following error:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape
[-1,32,32,3] has negative dimensions [[Node: input_1 =
Placeholderdtype=DT_FLOAT, shape=[?,32,32,3],
_device="/job:localhost/replica:0/task:0/cpu:0"]]
You cannot use accuracy as a loss function, as it is not differentiable. This is why upper bounds on accuracy like the cross-entropy are used instead.
Additionally, the way you implemented accuracy is also non-symbolic, you should have used only functions in keras.backend to implement a loss for it to work properly.
I had almost same problem, and I tried this and it worked for me.
Instead of:
preds = classif_model.predict(y_pred)
try:
preds = classif_model(y_pred)
I am not sure about the reason but it is because when we use model.predict(y) it need batch_size and while compiling we don't have any, so we can not use model.predict(y).
Please correct me if this is wrong.