Tensorflow TabTransformer model get weights before training - tensorflow

I am working with the Tensorflow Tabtransformer custom model and I am trying to get the initial weights after declaration using model.get_weights() but I get the following error:
from tabtransformertf.models.tabtransformer import TabTransformer
from tabtransformertf.utils.preprocessing import df_to_dataset, build_categorical_prep
numeric_features = ['TotPkts', 'TotBytes', 'Seq', 'Dur', 'Mean', 'StdDev', 'Sum', 'Min',
'Max', 'SrcBytes', 'DstBytes', 'Rate', 'SrcRate',
'DstRate']
cat_features = ['SrcPkts', 'DstPkts']
TARGET_FEATURE_NAME = "Category"
category_prep_layers = build_categorical_prep(tab_df, cat_features) #tab_df is the dataframe I am working on
model = TabTransformer(
numerical_features = numeric_features,
categorical_features = cat_features,
categorical_lookup=category_prep_layers,
numerical_discretisers=None, # simply passing the numeric features
embedding_dim=32,
out_dim=1,
out_activation='sigmoid',
depth=6,
heads=5,
attn_dropout=0.087687,
ff_dropout=0.429539,
mlp_hidden_factors=[1, 1],
use_column_embedding=False,
)
model.get_weights()
ValueError: Weights for model sequential have not yet been created. Weights are created when the Model is first called on inputs or `build()` is called with an `input_shape`.

Related

How to avoid memory leakage in an autoregressive model within tensorflow

Recently, I am training a LSTM with attention mechanism for regressionin tensorflow 2.9 and I met an problem during training with model.fit():
At the beginning, the training time is okay, like 7s/step. However, it was increasing during the process and after several steps, like 1000, the value might be 50s/step. Here below is a part of the code for my model:
class AttentionModel(tf.keras.Model):
def __init__(self, encoder_output_dim, dec_units, dense_dim, batch):
super().__init__()
self.dense_dim = dense_dim
self.batch = batch
encoder = Encoder(encoder_output_dim)
decoder = Decoder(dec_units,dense_dim)
self.encoder = encoder
self.decoder = decoder
def call(self, inputs):
# Creat a tensor to record the result
tempt = list()
encoder_output, encoder_state = self.encoder(inputs)
new_features = np.zeros((self.batch, 1, 1))
dec_initial_state = encoder_state
for i in range(6):
dec_inputs = DecoderInput(new_features=new_features, enc_output=encoder_output)
dec_result, dec_state = self.decoder(dec_inputs, dec_initial_state)
tempt.append(dec_result.logits)
new_features = dec_result.logits
dec_initial_state = dec_state
result=tf.concat(tempt,1)
return result
In the official documents for tf.function, I notice: "Don't rely on Python side effects like object mutation or list appends".
Since I use a dynamic python list with append() to record the intermediate variables, I guess each time during training, a new tf.graph was added. Is the reason my training is getting slower and slower?
Additionally, what should I use instead of python list to avoid this? I have tried with a numpy.zeros matrix but it will lead to another problem:
tempt = np.zeros(shape=(1,6))
...
for i in range(6):
dec_inputs = DecoderInput(new_features=new_features, enc_output=encoder_output)
dec_result, dec_state = self.decoder(dec_inputs, dec_initial_state)
tempt[i]=(dec_result.logits)
...
Cannot convert a symbolic tf.Tensor (decoder/dense_3/BiasAdd:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported.

Run prediction from saved model in tensorflow 2.0

I have a saved model (a directory with model.pd and variables) and wanted to run predictions on a pandas data frame.
I've unsuccessfully tried a few ways to do this:
Attempt 1: Restore the estimator from the saved model
estimator = tf.estimator.LinearClassifier(
feature_columns=create_feature_cols(),
model_dir=path,
warm_start_from=path)
Where path is the directory that has a model.pd and variables folder. I got an error
ValueError: Tensor linear/linear_model/dummy_feature1/weights is not found in
gs://bucket/Trainer/output/2013/20191008T170504.583379-63adee0eaee0/serving_model_dir/export/1570554483/variables/variables
checkpoint {'linear/linear_model/dummy_feature1/weights': [1, 1], 'linear/linear_model/dummy_feature2/weights': [1, 1]
}
Attempt 2: Run prediction directly from the saved model by running
imported = tf.saved_model.load(path) # path is the directory that has a `model.pd` and variables folder
imported.signatures["predict"](example)
But has not successfully passed the argument - looks like the function is looking for a tf.example and I am not sure how to convert a data frame to tf.example.
My attempt to convert is below but got an error that df[f] is not a tensor:
for f in features:
example.features.feature[f].float_list.value.extend(df[f])
I've seen solutions on StackOverflow but they are all tensorflow 1.14. Greatly appreciate it if someone can help with tensorflow 2.0.
Considering you have your saved model present like this:
my_model
assets saved_model.pb variables
You can load your saved model using:
new_model = tf.keras.models.load_model('saved_model/my_model')
# Check its architecture
new_model.summary()
To perform prediction on a DataFrame you need to:
Wrap scalars into a list so as to have a batch dimension (models only process batches of data, not single samples)
Call convert_to_tensor on each feature
Example 1:
If you have values for the first test row as
sample = {
'Type': 'Cat',
'Age': 3,
'Breed1': 'Tabby',
'Gender': 'Male',
'Color1': 'Black',
'Color2': 'White',
'MaturitySize': 'Small',
'FurLength': 'Short',
'Vaccinated': 'No',
'Sterilized': 'No',
'Health': 'Healthy',
'Fee': 100,
'PhotoAmt': 2,
}
input_dict = {name: tf.convert_to_tensor([value]) for name, value in sample.items()}
predictions = new_model.predict(input_dict)
prob = tf.nn.sigmoid(predictions[0])
print(
"This particular pet had a %.1f percent probability "
"of getting adopted." % (100 * prob)
)
Example 2:
Or if you have multiple rows present in the same order as the train data
predict_dataset = tf.convert_to_tensor([
[5.1, 3.3, 1.7, 0.5,],
[5.9, 3.0, 4.2, 1.5,],
[6.9, 3.1, 5.4, 2.1]
])
# training=False is needed only if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = new_model(predict_dataset, training=False)
for i, logits in enumerate(predictions):
class_idx = tf.argmax(logits).numpy()
p = tf.nn.softmax(logits)[class_idx]
name = class_names[class_idx]
print("Example {} prediction: {} ({:4.1f}%)".format(i, name, 100*p))

How to construct and reuse networks across two input branches of a network?

How to do something like this?
nn = get_networks()
A = nn(X_input)
B = nn(X_other_input)
C = A + B
model = ...
So that all the tensors in nn are the same, only the input-training branches are different?
In pure tensorflow you do this with
tf.variable_scope('something', reuse=tf.AUTO_REUSE):
define stuff here
and carefully naming your layers.
But basically you can construct nn in the first place because you can not pass a non-called layer to a layer call!
For example:
In [21]: tf.keras.layers.Dense(16)(tf.keras.layers.Dense(8))
...
AttributeError: 'Dense' object has no attribute 'shape'
UPDATE:
I have been accomplishing this by creating an uncompiled model as the sub-network. That "model" can then be passed to other network creation functions. For example, if you have a functionaly equation that you want to solve, you might approximate the function with a network and then pass the network to the function which is itself a network.
It depends how you would like to reuse it, but the idea is to save your layers once initialized, and use them multiple times later.
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import numpy as np
layers = {}
def net1(input):
layers["l1"] = keras.layers.Dense(10)
layers["l2"] = keras.layers.Dense(10)
return layers["l1"](layers["l2"](keras.layers.Flatten()(input)))
def net2(input):
return layers["l1"](layers["l2"](keras.layers.Flatten()(input)))
input1 = keras.layers.Input((2, 2))
input2 = keras.layers.Input((2, 2))
model1 = keras.Model(inputs=input1, outputs=net1(input1))
model1.compile(loss=keras.losses.mean_squared_error, optimizer=keras.optimizers.Adam())
model2 = keras.Model(inputs=input2, outputs=net2(input2))
model2.compile(loss=keras.losses.mean_squared_error, optimizer=keras.optimizers.Adam())
x = np.random.randint(0, 100, (50, 2, 2))
m1 = model1.predict(x)
m2 = model2.predict(x)
print(x[0])
print(m1[0])
print(m2[0])
Outputs are identical:
[ 10.114908 -13.074531 -8.671929 -59.03201 55.389366 1.3610549
-38.051434 8.355987 7.5310936 -27.717983 ]
[ 10.114908 -13.074531 -8.671929 -59.03201 55.389366 1.3610549
-38.051434 8.355987 7.5310936 -27.717983 ]

TensorFlow input function for reading sparse data (in libsvm format)

I'm new to TensorFlow and trying to use the Estimator API for some simple classification experiments. I have a sparse dataset in libsvm format. The following input function works for small datasets:
def libsvm_input_function(file):
def input_function():
indexes_raw = []
indicators_raw = []
values_raw = []
labels_raw = []
i=0
for line in open(file, "r"):
data = line.split(" ")
label = int(data[0])
for fea in data[1:]:
id, value = fea.split(":")
indexes_raw.append([i,int(id)])
indicators_raw.append(int(1))
values_raw.append(float(value))
labels_raw.append(label)
i=i+1
indexes = tf.SparseTensor(indices=indexes_raw,
values=indicators_raw,
dense_shape=[i, num_features])
values = tf.SparseTensor(indices=indexes_raw,
values=values_raw,
dense_shape=[i, num_features])
labels = tf.constant(labels_raw, dtype=tf.int32)
return {"indexes": indexes, "values": values}, labels
return input_function
However, for a dataset of a few GB size I get the following error:
ValueError: Cannot create a tensor proto whose content is larger than 2GB.
How can I avoid this error? How should I write an input function to read medium-sized sparse datasets (in libsvm format)?
When use estimator, for libsvm data input, you can create dense index list, dense value list, then use feature_column.categorical_column_with_identity and feature_column.weighted_categorical_column to create feature column, finally, put feature columns to estimator. Maybe your input features length is variable, you can use padded_batch to handle it.
here some codes:
## here is input_fn
def input_fn(data_dir, is_training, batch_size):
def parse_csv(value):
## here some process to create feature_indices list, feature_values list and labels
return {"index": feature_indices, "value": feature_values}, labels
dataset = tf.data.Dataset.from_tensor_slices(your_filenames)
ds = dataset.flat_map(
lambda f: tf.data.TextLineDataset(f).map(parse_csv)
)
ds = ds.padded_batch(batch_size, ds.output_shapes, padding_values=(
{
"index": tf.constant(-1, dtype=tf.int32),
"value": tf.constant(0, dtype=tf.float32),
},
tf.constant(False, dtype=tf.bool)
))
return ds.repeat().prefetch(batch_size)
## create feature column
def build_model_columns():
categorical_column = tf.feature_column.categorical_column_with_identity(
key='index', num_buckets=your_feature_dim)
sparse_columns = tf.feature_column.weighted_categorical_column(
categorical_column=categorical_column, weight_feature_key='value')
dense_columns = tf.feature_column.embedding_column(sparse_columns, your_embedding_dim)
return [sparse_columns], [dense_columns]
## when created feature column, you can put them into estimator, eg. put dense_columns into DNN, and sparse_columns into linear model.
## for export savedmodel
def raw_serving_input_fn():
feature_spec = {"index": tf.placeholder(shape=[None, None], dtype=tf.int32),
"value": tf.placeholder(shape=[None, None], dtype=tf.float32)}
return tf.estimator.export.build_raw_serving_input_receiver_fn(feature_spec)
Another way, you can create your custom feature column, like this: _SparseArrayCategoricalColumn
I have been using tensorflow.contrib.libsvm. Here's an example (i am using eager execution with generators)
import os
import tensorflow as tf
import tensorflow.contrib.libsvm as libsvm
def all_libsvm_files(folder_path):
for file in os.listdir(folder_path):
if file.endswith(".libsvm"):
yield os.path.join(folder_path, file)
def load_libsvm_dataset(path_to_folder):
return tf.data.TextLineDataset(list(all_libsvm_files(path_to_folder)))
def libsvm_iterator(path_to_folder):
dataset = load_libsvm_dataset(path_to_folder)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
yield libsvm.decode_libsvm(tf.reshape(next_element, (1,)),
num_features=666,
dtype=tf.float32,
label_dtype=tf.float32)
libsvm_iterator gives you a feature-label pair back on each iteration, from multiple files inside a folder that you specify.

Which variables to pass to a tensor flow predictor for tf.feature_coloumns using wide and deep learning model?

I've been trying out the wide and deep learning example from the tensor flow site: https://www.tensorflow.org/tutorials/wide_and_deep
I can train and evaluate the model and even predict within that same process but I can't seem to figure out what input I need to pass into the predictor function when I try to do a prediction from a model that was saved and then reloaded via the predictor.from_saved_model function.
My feature columns and model look like this which runs fine:
term = tf.feature_column.categorical_column_with_vocabulary_list("term", unique_terms['term'].tolist())
name = tf.feature_column.categorical_column_with_vocabulary_list("name", unique_name['name'].tolist())
base_columns = [term, cust_name]
crossed_columns = [
tf.feature_column.crossed_column(["term", "cust_name"], hash_bucket_size=100000),
]
deep_columns = [
tf.feature_column.indicator_column(term),
tf.feature_column.indicator_column(cust_name),
]
model_dir = export_dir
search_model = tf.estimator.DNNLinearCombinedClassifier(
model_dir=model_dir,
linear_feature_columns=crossed_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=[100, 50])
I saved the model like this:
feature_columns = crossed_columns + deep_columns
feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
export_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
servable_model_dir = export_dir
servable_model_path = search_model.export_savedmodel(servable_model_dir, export_input_fn)
And then I load it back from file like this:
predict_fn = predictor.from_saved_model(export_dir)
predictions = predict_fn({'X':[10]})
The predict_fn is expecting a dictionary with key "inputs" not "x" except I am not sure what the value of "inputs" should be. Can anyone help me out on this please?