I’m trying to create a 3d interactive graph linked with three sliders. I used dash plotly. But when I run this code, I get a blank 2d graph with sliders. If anyone can help me to find mistakes in my code, it would be very helpful. Thank you
I coded this in python.
Below is my data alonwith code
|A |C |B|
|191|11870402.57|150927.156|
|194|11534176.96|150926.613|
|200|8791715.569|150309.893|
|219|9058784.693|130344.409|
|193|11710374.76|150993.204|
|230|8966576.793|121803.204|
|196|11563137.82|147352.525|
|197|11559778.19|147360.662|
|232|8145250.015|134850.363|
|230|8960357.94|122119.87|
|241|8343604.908|118177.929|
'''
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
import pandas as pd
app = Dash(name)
app.layout = html.Div([
html.H4(‘Illustrations’),
dcc.Graph(id=“graph_scatter”),
html.P(“A:”),
dcc.Slider(
id=‘3d-scatter-plot-x-range-slider’,
min=df[‘A’].min(), max=df[‘A’].max(),
value=df[‘A’].max()),
html.P(“B:”),
dcc.Slider(
id=‘3d-scatter-plot-y-range-slider’,
min=df[‘B’].min(), max=df[‘B’].max(),
value=df[‘B’].max()),
html.P(“C:”),
dcc.Slider(
id=‘3d-scatter-plot-z-range-slider’,
min=df[‘C’].min(), max=df[‘C’].max(),
value=df[‘C’].max())
])
#app.callback(
Output(‘graph’, ‘figure’),
[Input(‘3d-scatter-plot-x-range-slider’, ‘value’),
Input(‘3d-scatter-plot-y-range-slider’, ‘value’),
Input(‘3d-scatter-plot-z-range-slider’, ‘value’)
])
def update_bar_chart(slider_range_x, slider_range_y, slider_range_z):
df = pd.read_csv(‘ABC.csv’) # replace with your own data source
low_x, high_x = slider_range_x
low_y, high_y = slider_range_y
low_z, high_z = slider_range_z
mask = (df.A > low_x) &
(df.A < high_x) & (df.B > low_y) & (df.B < high_y) & (df.C > low_z) & (df.C <
high_z)
fig = px.scatter_3d(mask,
x ='A', z='C',y='B')
return fig
if name == “main”:
app.run_server(debug=False)
'''
I see some problem in your code.
First: You set id in your dcc.Graph is graph_scatter but in you callback you set it is graph
Second: You are using Slider so that you can not change the low_x, low_y, low_z but high_x, high_y, high_y. So that you can not use something like low_x, high_x = slider_range_x. Based on your code I revised as below:
from dash import Dash, dcc, html, Input, Output
import plotly.express as px
import pandas as pd
import dash_bootstrap_components as dbc
app = Dash(__name__, external_stylesheets=[dbc.themes.LUX])
app.layout = html.Div([
html.H4('Illustrations'),
dcc.Graph(id='graph_scatter',figure={}),
html.P('A:'),
dcc.Slider(
id='3d-scatter-plot-x-range-slider',
min=df['A'].min(), max=df['A'].max(),
value=df['A'].max()),
html.P('B:'),
dcc.Slider(
id='3d-scatter-plot-y-range-slider',
min=df['B'].min(), max=df['B'].max(),
value=df['B'].max()),
html.P('C:'),
dcc.Slider(
id='3d-scatter-plot-z-range-slider',
min=df['C'].min(), max=df['C'].max(),
value=df['C'].max())
])
#app.callback(
Output('graph_scatter', 'figure'),
[Input('3d-scatter-plot-x-range-slider', 'value'),
Input('3d-scatter-plot-y-range-slider', 'value'),
Input('3d-scatter-plot-z-range-slider', 'value')
])
def update_bar_chart(slider_range_x, slider_range_y, slider_range_z):
high_x = slider_range_x
high_y = slider_range_y
high_z = slider_range_z
dff = df[(df['A'] < high_x)&(df['B'] < high_y)&(df['C'] < high_z)]
print(high_x)
fig = px.scatter_3d(dff,x ='A', z='C',y='B')
return fig
if __name__ == "__main__":
app.run_server(debug=False)
Related
My data has 4 attributes: dataset (D1/D2), model (M1/M2), layer (L1/L2), scene (S1/S2). I can make a chart grouped by scenes and then merge plots horizontally and vertically (pic above).
However, I would like to have 'double grouping' by scene and dataset, like merging the D1 and D2 plots by placing blue/orange bars from next to each other but with different opacity or pattern/hatch.
Basically something like this (pretend that the black traits are a hatch pattern).
Here is the code to reproduce the first plot
import numpy as np
import itertools
import argparse
import pandas as pd
import matplotlib.pyplot as plt
import os
import altair as alt
alt.renderers.enable('altair_viewer')
np.random.seed(0)
################################################################################
model_keys = ['M1', 'M2']
data_keys = ['D1', 'D2']
scene_keys = ['S1', 'S2']
layer_keys = ['L1', 'L2']
ys = []
models = []
dataset = []
layers = []
scenes = []
for sc in scene_keys:
for m in model_keys:
for d in data_keys:
for l in layer_keys:
for s in range(10):
data_y = list(np.random.rand(10) / 10)
ys += data_y
scenes += [sc] * len(data_y)
models += [m] * len(data_y)
dataset += [d] * len(data_y)
layers += [l] * len(data_y)
# ------------------------------------------------------------------------------
df = pd.DataFrame({'Y': ys,
'Model': models,
'Dataset': dataset,
'Layer': layers,
'Scenes': scenes})
bars = alt.Chart(df, width=100, height=90).mark_bar().encode(
# field to group columns on
x=alt.X('Scenes:N',
title=None,
axis=alt.Axis(
grid=False,
title=None,
labels=False,
),
),
# field to use as Y values and how to calculate
y=alt.Y('Y:Q',
aggregate='mean',
axis=alt.Axis(
grid=True,
title='Y',
titleFontWeight='normal',
),
),
# field to use for sorting
order=alt.Order('Scenes',
sort='ascending',
),
# field to use for color segmentation
color=alt.Color('Scenes',
legend=alt.Legend(orient='bottom',
padding=-10,
),
title=None,
),
)
error_bars = alt.Chart(df).mark_errorbar(extent='ci').encode(
x=alt.X('Scenes:N'),
y=alt.Y('Y:Q'),
)
text = alt.Chart(df).mark_text(align='center',
baseline='line-bottom',
color='black',
dy=-5 # y-shift
).encode(
x=alt.X('Scenes:N'),
y=alt.Y('mean(Y):Q'),
text=alt.Text('mean(Y):Q', format='.1f'),
)
chart_base = bars + error_bars + text
chart_base = chart_base.facet(
# field to use to use as the set of columns to be represented in each group
column=alt.Column('Layer:N',
# header=alt.Header(
# labelFontStyle='bold',
# ),
title=None,
sort=list(set(models)), # get unique indices
),
spacing={"row": 0, "column": 15},
)
def unique(sequence):
seen = set()
return [x for x in sequence if not (x in seen or seen.add(x))]
for i, m in enumerate(unique(models)):
chart_imnet = chart_base.transform_filter(
alt.FieldEqualPredicate(field='Dataset', equal='D1'),
).transform_filter(
alt.FieldEqualPredicate(field='Model', equal=m)
)
chart_places = chart_base.transform_filter(
alt.FieldEqualPredicate(field='Dataset', equal='D2')
).transform_filter(
alt.FieldEqualPredicate(field='Model', equal=m)
)
if i == 0:
title_params = dict({'align': 'center', 'anchor': 'middle', 'dy': -10})
chart_imnet = chart_imnet.properties(title=alt.TitleParams('D1', **title_params))
chart_places = chart_places.properties(title=alt.TitleParams('D2', **title_params))
chart_places = alt.concat(chart_places,
title=alt.TitleParams(
m,
baseline='middle',
orient='right',
anchor='middle',
angle=90,
# dy=10,
dx=30 if i == 0 else 0,
),
)
if i == 0:
chart = (chart_imnet | chart_places).resolve_scale(x='shared')
else:
chart = (chart & (chart_imnet | chart_places).resolve_scale(x='shared'))
chart.save('test.html')
For now, I don't know a good answer, but once https://github.com/altair-viz/altair/pull/2528 is accepted you can use the xOffset encoding channel as such:
alt.Chart(df, height=90).mark_bar(tooltip=True).encode(
x=alt.X("Scenes:N"),
y=alt.Y("mean(Y):Q"),
color=alt.Color("Scenes:N"),
opacity=alt.Opacity("Dataset:N"),
xOffset=alt.XOffset("Dataset:N"),
column=alt.Column('Layer:N'),
row=alt.Row("Model:N")
).resolve_scale(x='independent')
Which will result in:
See Colab Notebook or Vega Editor
EDIT
To control the opacity and legend names one can do as such
alt.Chart(df, height=90).mark_bar(tooltip=True).encode(
x=alt.X("Scenes:N"),
y=alt.Y("mean(Y):Q"),
color=alt.Color("Scenes:N"),
opacity=alt.Opacity("Dataset:N",
scale=alt.Scale(domain=['D1', 'D2'],
range=[0.2, 1.0]),
legend=alt.Legend(labelExpr="datum.label == 'D1' ? 'D1 - transparent' : 'D2 - full'")),
xOffset=alt.XOffset("Dataset:N"),
column=alt.Column('Layer:N'),
row=alt.Row("Model:N")
).resolve_scale(x='independent')
i'm trying to solve tsp with OR-tools for a problem of something like 80,000 nodes, the problem is, I need a huge distance matrix that takes to much memory ,so its infeasible and i don't get a solution.
so:
is there an option to work with partial distance matrix in or-tools?
if not is there a way to improve my code?
is there another external solver that can work for this task in python?
import math
from collections import namedtuple
import random
import time
from collections import namedtuple
from sklearn.metrics.pairwise import euclidean_distances
import numpy as np
import numba
from scipy.spatial import distance_matrix
from sklearn.metrics.pairwise import euclidean_distances
from math import sqrt
Point = namedtuple("Point", ['x', 'y'])
def solve_it(input_data):
# Modify this code to run your optimization algorithm
global POINTS
# parse the input
lines = input_data.split('\n')
nodeCount = int(lines[0])
points = []
for i in range(1, nodeCount+1):
line = lines[i]
parts = line.split()
points.append(Point(float(parts[0]), float(parts[1])))
#2.routing with or tools
def dist_matrix(nodeCount,points):
data=[]
for k in range(len(points)):
data.append([int(points[k].x),int(points[k].y)])
D=euclidean_distances(data, data)
return D
def create_data_model(D):
"""Stores the data for the problem."""
data = {}
data['distance_matrix'] = D # yapf: disable
data['num_vehicles'] = 1
data['depot'] = 0
return data
def print_solution(manager, routing, solution):
index = routing.Start(0)
plan_output = []#Route for vehicle 0:\n'
route_distance = 0
while not routing.IsEnd(index):
plan_output.append(manager.IndexToNode(index))
index = solution.Value(routing.NextVar(index))
return plan_output
def or_main(nodeCount,points):
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
"""Entry point of the program."""
# Instantiate the data problem.
global sol
D=dist_matrix(nodeCount,points)
data = create_data_model(D)
# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
data['num_vehicles'], data['depot'])
# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)
def distance_callback(from_index, to_index):
"""Returns the distance between the two nodes."""
# Convert from routing variable Index to distance matrix NodeIndex.
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data['distance_matrix'][from_node][to_node]
transit_callback_index = routing.RegisterTransitCallback(distance_callback)
# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# Setting first solution heuristic.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.local_search_metaheuristic = (
routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
k = 100
if nodeCount <= 100:
k = 30
elif 100 <= nodeCount <= 1000:
k = 300
elif nodeCount > 1000:
k = 17000
search_parameters.time_limit.seconds =k
search_parameters.log_search = True
# Solve the problem.
solution = routing.SolveWithParameters(search_parameters)
# #print solution on console.
if solution:
sol=print_solution(manager, routing, solution)
return sol
######################################################################
solution=or_main(nodeCount,points)
# calculate the length of the tour
obj = length(points[solution[-1]], points[solution[0]])
for index in range(0, nodeCount-1):
obj += length(points[solution[index]], points[solution[index+1]])
# prepare the solution in the specified output format
output_data = '%.2f' % obj + ' ' + str(0) + '\n'
output_data += ' '.join(map(str, solution))
return output_data
if __name__ == '__main__':
import sys
if len(sys.argv) > 1:
file_location = sys.argv[1].strip()
with open(file_location, 'r') as input_data_file:
input_data = input_data_file.read()
#print(solve_it(input_data))
else:
print('This test requires an input file. Please select one from the data directory. (i.e. python solver.py ./data/tsp_51_1)')
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as dates
import numpy as np
dt = pd.read_csv("C:\Subhro\ML_Internship\MARUTI_2.csv")
data = pd.DataFrame(dt)
data = data.drop('Date',axis=1)
data.drop(['Unnamed: 0'],axis=1,inplace=True)
print(data)
Roll_Mean_14 = data['Close Price'].rolling(window=14).mean()
Standard_Dev_14 = data['Close Price'].rolling(window=14).mean().std()
Upper_Band_14 = data['Close Price'].rolling(window=14).mean() + (2*Standard_Dev_14)
Low_Band_14 = data['Close Price'].rolling(window=14).mean() - (2*Standard_Dev_14)
avg_stock_price = data['Average Price']
stock_price = data['Close Price']
data['Roll_Avg'] = Roll_Mean_14
data['Upper_Band'] = Upper_Band_14
data['Lower_Band'] = Low_Band_14
data['Avg_Stock_Price'] = avg_stock_price
data=data.drop(data.head(14).index, inplace=False)
print(data)
for i in (data):
if((data['Close Price'][i])<(data['Lower_Band'][i])):
data['Call'][i]='Buy'
elif((data['Close Price'][i])>(data['Lower Band'][i])) and ((data['Close Price'][i])<(data['Roll_Avg'])):
data['Call'][i]='Hold Buy/Liquidate Short'
elif((data['Close Price'][i])>(data['Roll_Avg'][i])) and ((data['Close Price'][i])<(data['Upper Band'])):
data['Call'][i]='Hold Short/Liquidate Buy'
elif((data['Close Price'][i])>(data['Upper_Band'])):
data['Call'][i]='Short'
print(data)
In this code, I have been creating a new column : 'Call' to print the categories 'Buy','Short','Hold Buy/Liquidate Short', 'Hold Short/Liquidate Buy' according to the conditions given in the code. On running the code it is showing me the error as
KeyError : 'Symbol' in line
if((data['Close Price'][i])<(data['Lower_Band'][i])):
Your manner of accessing the indexes of the dataframe is incorrect.
You could try this :
for i in data.index:
if((data[i]['Close Price'])<(data[i]['Lower_Band'])):
The way you access a particular value(cell) in a dataframe(table) is :
data[row_index][column_index]
would anyone advise me how to adjust the X axis to better display the date on this graph?
from math import pi
import pandas as pd
from bokeh.io import show
from bokeh.models import LinearColorMapper, BasicTicker, PrintfTickFormatter, ColorBar
from bokeh.plotting import figure
#cesta k souboru
path = "C://Users//Zemi4//Desktop//zpr3//all2.csv"
#nacteni dataframu
data = pd.read_csv(path, delimiter = ",")
data['Cas'] = data['Cas'].astype(str)
data = data.set_index('Cas')
data.columns.name = 'Mistnost'
times = list(data.index)
rooms = list(data.columns)
df = pd.DataFrame(data.stack(), columns=['float']).reset_index()
colors = ['#440154', '#404387', '#29788E', '#22A784', '#79D151', '#FDE724', '#FCFEA4', '#FBA40A', '#DC5039']
mapper = LinearColorMapper(palette=colors, low=df.float.min(), high=df.float.max())
TOOLS = "hover,save,pan,box_zoom,reset,wheel_zoom"
p = figure(title="Heatmap ({0} - {1})".format(times[0], times[-1]),
x_range=times, y_range=list(reversed(rooms)),
x_axis_location="above", plot_width=1500, plot_height=900,
tools=TOOLS, toolbar_location='below',
tooltips=[('Time: ', '#Cas'), ('Temperature: ', '#float'), ('Room: ', '#Mistnost')],
x_axis_type='datetime')
p.grid.grid_line_color = None
p.axis.axis_line_color = None
p.axis.major_tick_line_color = None
p.axis.major_label_text_font_size = "5pt"
p.axis.major_label_standoff = 0
p.xaxis.major_label_orientation = pi / 3
p.rect(x="Cas", y="Mistnost", width=1, height=1,
source=df,
fill_color={'field': 'float', 'transform': mapper},
line_color=None)
color_bar = ColorBar(color_mapper=mapper, major_label_text_font_size="5pt",
ticker=BasicTicker(desired_num_ticks=len(colors)),
formatter=PrintfTickFormatter(format="%f"),
label_standoff=6, border_line_color=None, location=(0, 0))
p.add_layout(color_bar, 'right')
show(p) # show the pl
Try: p.xaxis[0].ticker.desired_num_ticks = <number_ticks_you_want_to_display>.
Or apply a specific ticker (see Bokeh docs) like you did for the ColorBar.
I am getting familiar with scikit and its pandas integration using the Titanic tutorial on Kaggle. I have cleaned my data and would like to make some prediction. I can do it calling a pipeline fit and transform - unfortunately I get an error trying to do the same with cross_val_score.
I am using the sklearn-pandas cross_val_score
The code is as follows:
mapping = [
('Age', None),
('Embarked',LabelBinarizer()),
('Fare',None),
('Pclass',LabelBinarizer()),
('Sex',LabelBinarizer()),
('Group',LabelBinarizer()),
('familySize',None),
('familyType',LabelBinarizer()),
('Title',LabelBinarizer())
]
pipe = Pipeline([
('featurize', DataFrameMapper(mapping)),
('logReg', LogisticRegression())
])
X = df_train[df_train.columns.drop('Survived')]
y = df_train['Survived']
#model = pipe.fit(X = X, y = y)
#prediction = model.predict(df_train)
score = cross_val_score(pipe, X = X, y = y, scoring = 'accuracy')
df_train is a Pandas dataframe containing all my training set, including outcomes. The two commented lines:
model = pipe.fit(X = X, y = y)
prediction = model.predict(df_train)
Work fine and prediction returns me an array with predicted outcomes. Using the same with cross_val_score, I get the following error:
X has 20 features per sample; expecting 19
Full code below, can be run with the Titanic CSV files on Kaggle (https://www.kaggle.com/c/titanic/data)
#%% Libraries import
import pandas as pd
import numpy as np
from sklearn_pandas import DataFrameMapper, cross_val_score
from sklearn.preprocessing import LabelBinarizer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
#%% Read the data
path = 'E:/Kaggle/Titanic/Data/'
file_training = 'train.csv'
file_test = 'test.csv'
#Import the training and test dataset and concatenate them
df_training = pd.read_csv(path + file_training, header = 0, index_col = 'PassengerId')
df_test = pd.read_csv(path + file_test, header = 0, index_col = 'PassengerId')
# Work on the concatenated training and test data for feature engineering and clean-up
df = pd.concat([df_training, df_test], keys = ['train','test'])
#%% Initial data exploration and cleaning
df.describe(include = 'all')
pd.isnull(df).sum() > 0
#%% Preprocesing and Cleanup
#Create new columns with the name (to identify individuals part of a family)
df['LName'] = df['Name'].apply(lambda x:x.split(',')[0].strip())
df['FName'] = df['Name'].apply(lambda x:x.split(',')[1].split('.')[1].strip())
#Get the title
df['Title'] = df['Name'].apply(lambda x:x.split(',')[1].split('.')[0].strip())
titleDic = {
'Master' : 'kid',
'Mlle' : 'unmarriedWoman',
'Miss' : 'unmarriedWoman',
'Ms' : 'unmarriedWoman',
'Jonkheer' : 'noble',
'Don' : 'noble',
'Dona' : 'noble',
'Sir' : 'noble',
'Lady' : 'noble',
'the Countess' : 'noble',
'Capt' : 'ranked',
'Major' : 'ranked',
'Col' : 'ranked',
'Mr' : 'standard',
'Mme' : 'standard',
'Mrs' : 'standard',
'Dr' : 'academic',
'Rev' : 'academic'
}
df['Group'] = df['Title'].map(titleDic)
#%% Working with the family size
#Get the family size
df['familySize'] = df['Parch'] + df['SibSp'] + 1
#Add a family tag (single, couple, small, large)
df['familyType'] = pd.cut(df['familySize'],
[1,2,3,5,np.inf],
labels = ['single','couple','sFamily','bFamily'],
right = False)
#%% Filling empty values
#Fill empty values with the mean or mode for the column
#Fill the missing values with mean for age per title, class and gender. Store value in AgeFull variable
agePivot = pd.DataFrame(df.groupby(['Group', 'Sex'])['Age'].median())
agePivot.columns = ['AgeFull']
df = pd.merge(df, agePivot, left_on = ['Group', 'Sex'], right_index = True)
df.loc[df['Age'].isnull(),['Age']] = df['AgeFull']
#Embark location missing values
embarkPivot = pd.DataFrame(df.groupby(['Group'])['Embarked'].agg(lambda x:x.value_counts().index[0]))
embarkPivot.columns = ['embarkFull']
df = pd.merge(df, embarkPivot, left_on = ['Group'], right_index = True)
df.loc[df['Embarked'].isnull(),['Embarked']] = df['embarkFull']
#Fill the missing fare value
df.loc[df['Fare'].isnull(), 'Fare'] = df['Fare'].mean()
#%% Final clean-up (drop temporary columns)
df = df.drop(['AgeFull', 'embarkFull'], 1)
#%% Preparation for training
df_train = df.loc['train']
df_test = df.loc['test']
#Creation of dummy variables
mapping = [
('Age', None),
('Embarked',LabelBinarizer()),
('Fare',None),
('Pclass',LabelBinarizer()),
('Sex',LabelBinarizer()),
('Group',LabelBinarizer()),
('familySize',None),
('familyType',LabelBinarizer()),
('Title',LabelBinarizer())
]
pipe = Pipeline(steps = [
('featurize', DataFrameMapper(mapping)),
('logReg', LogisticRegression())
])
#Uncommenting the line below fixes the code - why?
#df_train = df_train.sort_index()
X = df_train[df_train.columns.drop(['Survived'])]
y = df_train.Survived
score = cross_val_score(pipe, X = df_train, y = df_train.Survived, scoring = 'accuracy')
This is very interesting. I have solved the issue just by sorting using the index the DataFrame before passing it to the cross_val_score in the pipeline.
df_train = df_train.sort_index()
Could anyone explain me why this would have an impact on how Scikit is working?