Related
I'm trying to create a driver for my usb device, using iOS and DriverKit.
I'm basing my code in the example used in WWDC: https://github.com/knightsc/USBApp
My driver starts fine when the device is connected and the readCompleted method is called fine, but the action->GetReference() gets only \0 characteres.
Also in order to know that the usb device is actually working I've connected it to my mac first and using PyUSB I can see that it's returning data in chunks of 1024 bytes in the interface 0.
This is the data I get in PyUSB:
array('B', [6, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0, 44, 0, 45, 0, 46, 0, 47, 0, 48, 0, 49, 0, 50, 0, 51, 0, 52, 0, 53, 0, 54, 0, 55, 0, 56, 0, 57, 0, 58, 0, 59, 0, 60, 0, 61, 0, 62, 0, 63, 0, 64, 0, 65, 0, 66, 0, 67, 0, 68, 0, 69, 0, 70, 0, 71, 0, 72, 0, 73, 0, 74, 0, 75, 0, 76, 0, 77, 0, 78, 0, 79, 0, 80, 0, 81, 0, 82, 0, 83, 0, 84, 0, 85, 0, 86, 0, 87, 0, 88, 0, 89, 0, 90, 0, 91, 0, 92, 0, 93, 0, 94, 0, 95, 0, 96, 0, 97, 0, 98, 0, 99, 0, 100, 0, 101, 0, 102, 0, 103, 0, 104, 0, 105, 0, 106, 0, 107, 0, 108, 0, 109, 0, 110, 0, 111, 0, 112, 0, 113, 0, 114, 0, 115, 0, 116, 0, 117, 0, 118, 0, 119, 0, 120, 0, 121, 0, 122, 0, 123, 0, 124, 0, 125, 0, 126, 0, 127, 0, 128, 0, 129, 0, 130, 0, 131, 0, 132, 0, 133, 0, 134, 0, 135, 0, 136, 0, 137, 0, 138, 0, 139, 0, 140, 0, 141, 0, 142, 0, 143, 0, 144, 0, 145, 0, 146, 0, 147, 0, 148, 0, 149, 0, 150, 0, 151, 0, 152, 0, 153, 0, 154, 0, 155, 0, 156, 0, 157, 0, 158, 0, 159, 0, 160, 0, 161, 0, 162, 0, 163, 0, 164, 0, 165, 0, 166, 0, 167, 0, 168, 0, 169, 0, 170, 0, 171, 0, 172, 0, 173, 0, 174, 0, 175, 0, 176, 0, 177, 0, 178, 0, 179, 0, 180, 0, 181, 0, 182, 0, 183, 0, 184, 0, 185, 0, 186, 0, 187, 0, 188, 0, 189, 0, 190, 0, 191, 0, 192, 0, 193, 0, 194, 0, 195, 0, 196, 0, 197, 0, 198, 0, 199, 0, 200, 0, 201, 0, 202, 0, 203, 0, 204, 0, 205, 0, 206, 0, 207, 0, 208, 0, 209, 0, 210, 0, 211, 0, 212, 0, 213, 0, 214, 0, 215, 0, 216, 0, 217, 0, 218, 0, 219, 0, 220, 0, 221, 0, 222, 0, 223, 0, 224, 0, 225, 0, 226, 0, 227, 0, 228, 0, 229, 0, 230, 0, 231, 0, 232, 0, 233, 0, 234, 0, 235, 0, 236, 0, 237, 0, 238, 0, 239, 0, 240, 0, 241, 0, 242, 0, 243, 0, 244, 0, 245, 0, 246, 0, 247, 0, 248, 0, 249, 0, 250, 0, 251, 0, 252, 0, 253, 0, 254, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
This is the Ivars:
struct Mk1dDriver_IVars
{
IOUSBHostInterface *interface;
IOUSBHostPipe *inPipe;
OSAction *ioCompleteCallback;
IOBufferMemoryDescriptor *inData;
uint16_t maxPacketSize;
};
This is the Start method:
kern_return_t
IMPL(Mk1dDriver, Start)
{
kern_return_t ret;
IOUSBStandardEndpointDescriptors descriptors;
ret = Start(provider, SUPERDISPATCH);
__Require(kIOReturnSuccess == ret, Exit);
ret = RegisterService();
if (ret != kIOReturnSuccess)
{
Log("Start() - Failed to register service with error: 0x%08x.", ret);
goto Exit;
}
ivars->interface = OSDynamicCast(IOUSBHostInterface, provider);
__Require_Action(NULL != ivars->interface, Exit, ret = kIOReturnNoDevice);
ret = ivars->interface->Open(this, 0, NULL);
__Require(kIOReturnSuccess == ret, Exit);
ret = ivars->interface->CopyPipe(kMyEndpointAddress, &ivars->inPipe);
__Require(kIOReturnSuccess == ret, Exit);
ret = ivars->interface->CreateIOBuffer(kIOMemoryDirectionIn,
1024,
&ivars->inData);
__Require(kIOReturnSuccess == ret, Exit);
ret = OSAction::Create(this,
Mk1dDriver_ReadComplete_ID,
IOUSBHostPipe_CompleteAsyncIO_ID,
0,
&ivars->ioCompleteCallback);
__Require(kIOReturnSuccess == ret, Exit);
ret = ivars->inPipe->AsyncIO(ivars->inData,
ivars->maxPacketSize,
ivars->ioCompleteCallback,
0);
__Require(kIOReturnSuccess == ret, Exit);
os_log(OS_LOG_DEFAULT,"Finish");
// WWDC slides don't show the full function
// i.e. this is still unfinished
Exit:
return ret;
}
The only difference in this compared with the code from Apple is that I set capacity in the method CreateIOBuffer to 1024. This is because if I leave it to 0 it will return an error that memory could not be allocated: kIOReturnNoMemory
And the ReadComplete method:
void
IMPL(Mk1dDriver, ReadComplete)
{
char output[1024];
memcpy(action->GetReference(), &output, 1024);
os_log(OS_LOG_DEFAULT,"ReadComplete");
If I put a breakpoint in the log, I can see all the positions in output will be \0
Any idea what I'm doing wrong?
Thanks
You need to store some reference to the IOBufferMemoryDescriptor* that you asked AsyncIO to write to when the data from the device is received (ivars->inData) so that you can access it when the completion callback ReadComplete is called. You can store this in the memory that you can access with GetReference().
You should set the size of the custom memory that should be allocated for you. Currently you are allocating 0 bytes. See OSAction::Create.
In ReadComplete you can then call GetReference() to access the memory. Since you know that this memory contains a reference to the IOBufferMemoryDescriptor that data has been written to, you can then use it with memcpy.
Something like this:
ret = OSAction::Create(this,
Mk1dDriver_ReadComplete_ID,
IOUSBHostPipe_CompleteAsyncIO_ID,
sizeof(IOBufferMemoryDescriptor*),
&ivars->ioCompleteCallback);
memcpy(ivars->ioCompleteCallback->GetReference(),
ivars->inData, sizeof(IOBufferMemoryDescriptor*));
First parameter to memcpy is the destination.
void IMPL(Mk1dDriver, ReadComplete)
{
IOBufferMemoryDescriptor* ptr;
memcpy(ptr, action->GetReference(), sizeof(IOBufferMemoryDescriptor*));
IOAddressSegment addressSegement{};
ptr->GetAddressRange(&addressSegement);
char output[1024];
memcpy(output, addressSegement.address, addressSegement.length);
}
I have target data y_tr in shape (92107, 49) where each sample (row) is an array of length 49. I would like to loop over y_tr and one hot encode each array. I have been using keras to_categorical though I am facing an Indexerror.
Array in y_tr:
array([ 379, 379, 379, 252, 4166, 391, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0], dtype=int32)
The number of classes to encode each integer index = 10,000. (I do not wish to encode zero values):
onehots=[]
for seq in y_tr[:,1:]:
try:
onehots.append(to_categorical(seq - 1, num_classes=tar_vocab_size, dtype=np.int32))
except IndexError as e:
raise e
76 n = y.shape[0]
77 categorical = np.zeros((n, num_classes), dtype=dtype)
---> 78 categorical[np.arange(n), y] = 1
79 output_shape = input_shape + (num_classes,)
80 categorical = np.reshape(categorical, output_shape)
IndexError: index 28350 is out of bounds for axis 1 with size 10000
I'm trying to get a keras model i converted to tensorflow js, to work in react native but the model keeps giving bad responses. Did some digging and found realized that the tensor i passed into model.predict is some how being changed causing it to give the same incorrect prediction. Any suggestions would be appreciated. I'm pretty much hard stuck. Code below:
import React, {useState, useEffect} from 'react';
import {View, Text, Button} from 'react-native';
import * as tf from '#tensorflow/tfjs';
import {
bundleResourceIO
} from '#tensorflow/tfjs-react-native';
import * as mobilenet from '#tensorflow-models/mobilenet';
function thing() {
const [model, setModel] = useState(null);
const [tensor, setTensor] = useState(null);
async function loadModel() {
const modelJson = require('./assets/model.json');
const weight = require('./assets/group1-shard1of1.bin');
const backend = await tf.ready();
const item = await tf.loadLayersModel(
bundleResourceIO(modelJson, weight)
);
const tfTensor = tf.tensor([[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]);
setModel(item);
setTensor(tfTensor);
}
useEffect(() => {
loadModel();
}, []);
async function test() {
if(tensor !== null && model !== null) {
const result = await model.predict(tensor);
console.log(result.dataSync())
}
}
return (
<View>
<Button
onPress={test}
title="click"
color="#841584"
accessibilityLabel="Learn more about this purple button"
/>
</View>
);
}
export default thing;
Just like changing a single pixel in an image doesn't change the image, changing one bit in an array doesn't significantly adjust the prediction.
I ran mobilenet on a black 224x224 image and it predicted class 819 (whatever that is). Then I changed the top-left pixel to white and re-ran mobilenet and it still classifies as class 819.
See example code here
Changing a single bit does not have a cascading effect like a hash function. Mobilenet, by its nature is resilient to noise.
I trained a BERT model based on this notebook.
I export it as a tf SavedModel this way:
def serving_input_fn():
receiver_tensors = {
"input_ids": tf.placeholder(dtype=tf.int32, shape=[1, MAX_SEQ_LENGTH])
}
features = {
"input_ids": receiver_tensors['input_ids'],
"input_mask": 1 - tf.cast(tf.equal(receiver_tensors['input_ids'], 0), dtype=tf.int32),
"segment_ids": tf.zeros(dtype=tf.int32, shape=[1, MAX_SEQ_LENGTH]),
"label_ids": tf.placeholder(tf.int32, [None], name='label_ids')
}
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
estimator._export_to_tpu = False
estimator.export_saved_model("export", serving_input_fn)
Then if I try to use the saved model locally it works:
from tensorflow.contrib import predictor
predict_fn = predictor.from_saved_model("export/1575241274/")
print(predict_fn({
"input_ids": [[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
}))
# {'probabilities': array([[-0.01023898, -4.5866656 ]], dtype=float32), 'labels': 0}
Then I uploaded the SavedModel to a bucket and created a model and a model version on gcloud this way:
gcloud alpha ai-platform versions create v1gpu --model [...] --origin=[...] --python-version=3.5 --runtime-version=1.14 --accelerator=^:^count=1:type=nvidia-tesla-k80 --machine-type n1-highcpu-4
No issue there, the model is deployed and displayed as working in the console.
But if I try to get predictions, as such:
import googleapiclient.discovery
service = googleapiclient.discovery.build('ml', 'v1')
name = 'projects/[project_name]/models/[model_name]/versions/v1gpu'
response = service.projects().predict(
name=name,
body={'instances': [{
"input_ids": [[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
}]}
).execute()
print(response["predictions"])
All I get is the following error:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.6/dist-packages/googleapiclient/_helpers.py", line 130, in positional_wrapper
return wrapped(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/googleapiclient/http.py", line 851, in execute
raise HttpError(resp, content, uri=self.uri)
googleapiclient.errors.HttpError: <HttpError 400 when requesting https://ml.googleapis.com/v1/projects/[project_name]/models/[model_name]/versions/v1gpu:predict?alt=json returned "Bad Request">
I get the same error if I test the model from the gcloud console using the "Test your model with sample input data" feature.
Edit:
The saved_model has a tagset "serve" and signature_def "serving_default".
Output of "saved_model_cli show --dir 1575241274/ --tag_set serve --signature_def serving_default":
The given SavedModel SignatureDef contains the following input(s):
inputs['input_ids'] tensor_info:
dtype: DT_INT32
shape: (1, 128)
name: Placeholder:0
The given SavedModel SignatureDef contains the following output(s):
outputs['labels'] tensor_info:
dtype: DT_INT32
shape: ()
name: loss/Squeeze:0
outputs['probabilities'] tensor_info:
dtype: DT_FLOAT
shape: (1, 2)
name: loss/LogSoftmax:0
Method name is: tensorflow/serving/predict
The body of the request sent to the API has the form:
{"instances": [<instance 1>, <instance 2>, ...]}
As specified in documentation we need something like this:
{
"instances": [
<object>
...
]
}
In this case you have:
{
"instances": [
{
"input_ids":
[ <object> ]
}
...
]
}
You need to replace input_ids to instances:
{
"instances":
[
[101, 10468, 99304, 11496, 171, 112, 10176, 22873, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
]
}
Note If you can show the saved_model_cli will be great.
Also gcloud local predict command is also a good option for testing.
It depend of the signature of the model. In my case I have the following signature (just keeping the input part):
The given SavedModel SignatureDef contains the following input(s):
inputs['attention_mask'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_attention_mask:0
inputs['input_ids'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_input_ids:0
inputs['token_type_ids'] tensor_info:
dtype: DT_INT32
shape: (-1, 128)
name: serving_default_token_type_ids:0
and I need to pass data in the following format (in this case 2 examples):
{'instances':
[
{'input_ids': [101, 143, 18267, 15470, 90395, ...],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, .....],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, .....]
},
{'input_ids': [101, 17664, 143, 30728, .........],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, .......],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, ....]
}
]
}
I am using it with a Keras model with Tensorflow 2.2.0
I guess in your case you need (for 2 examples):
{'instances':
[
{'input_ids': [101, 143, 18267, 15470, 90395, ...]},
{'input_ids': [101, 17664, 143, 30728, .........]}
]
}
Updated
I am working on the word embedding model for answer Matching score prediction using Tflearn. I have to build a model using sentence vector using tflearn dnn classifier, Now I have to add a word embedding layer to the dnn model. How to do that? Thanks in advance.
"JVMdefines": enables a computer to run a Java program
is coverted as :
"JVMdefines": [[list([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
enables a computer to run a Java program :
list([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]
My question: Is there any method that the machine can able to analyze.
enables a "machine" to run a Java program
That is It can detect computer and machine as in same meaning.
I would post a clarifying comment, but I do not have enough reputation to do so, so I will try to answer given the information you have presented in the original question...
Your problem seems unclear, but here is how you would do this for a binary classification problem in tflearn.
Step 1: Preprocessing
First thing you need to do is to tokenize and transform your sentences into list of integers:
"What kind of food do you like?" ---> [234,64,12,5224,43,96,23]
Then, most people pad their sequences to all be the same length, cutting off the long ones or increasing the length of short ones by padding with 0's.
[234,64,12,5224,43,96,23] ---> [0,0,0,0....234,64,12,5224,43,96,23]
Hint:
from tflearn.data_utils import pad_sequences
padded = pad_sequences(unpadded, maxlen=max_document_length, value=0.)
Step 2: Model Building
After you transform all the text you have into integer sequences, you can build the model. Note here that our input shape is [None, max_document_length]. None means optional size (allows for variable batch size), and max_document_length is the length of our sequences that we padded previously.
#Create our model
network = input_data(shape=[None, max_document_length], name='input')
Create embedding matrix. Note that you push the embedding matrix to the CPU. The input dim parameter is looking for an integer that represents the size of your vocabulary. the output_dim is the size of your embedding.
with tf.device('/cpu:0'):
network = tflearn.embedding(network, input_dim=vocabulary_size, output_dim=128)
#Pass embeddings into an lstm layer (handles sequential problems)
network = tflearn.lstm(network, 512, dropout=0.8)
#Squish data into a fully connected layer, with 2 outputs for binary classification
network = tflearn.fully_connected(network, 2, activation='softmax')
#Perform regression to get the final anaswer
network = tflearn.regression(network, optimizer='rmsprop', learning_rate=0.001,
loss='categorical_crossentropy')
#Wrap the graph we just created in a tflearn DNN wrapper
model = tflearn.DNN(network)
#Run model.fit to actually train your model
model.fit(x_train, y_train, n_epoch=15, shuffle=True, validation_set=(x_val, y_val), show_metric=True, batch_size=batch_size)