vectorising images using matrix multiplication - numpy

I want to apply the homography matrix (3x3) to an image in order to convert it in the frame of reference of another image. so to create a panorama effect. Currently I have a working code that involves a nested for loop which iterates over all the pixel array and applies the transform the the vector of 3x1 pixels. I would like speed up the code and replace the nested for loop with a matrix multiplication so that multiply all the position indices by the homography matrix in one go.
This is my current code:
H = calcBestHomography(pts1b , pts3)
for i in range(im1.shape[1]):
for j in range(im1.shape[0]):
pt1 = np.array([i, j, 1])
pt3 = H # pt1.T
px = int(pt3[0] / pt3[2])
py = int(pt3[1] / pt3[2])
if (px > 0 and px < im3.shape[1] and py> 0 and py < im3.shape[0]):
im1[j , i , : ] = im3[py , px ,:]
thank you
this is my current attempt but my main issue is that since the homography matrix is a 3x3 I cannot pass a matrix that has more than 3 columns
ax0 = np.linspace(0, im1.shape[0]-1, im1.shape[0])
ax1 = np.linspace(0, im1.shape[1]-1, im1.shape[1])
ax2 = np.ones((2740 , 880))
ax2_3d = np.expand_dims(ax2, axis=2)
pts1 = np.meshgrid(ax0 , ax1 )
pts1 = np.stack(pts1 , axis=-1)
result = np.concatenate((pts1, ax2_3d), axis=2)
pt3 = (result) # H
px = (pt3[0] / pt3[2])
py = (pt3[1] / pt3[2])

Related

Automatic annotation for yolo not working

I am trying to generate some annotation for image files that I have created for training , I am pasting object image on the top of background image and getting the x,y coordinates of the location where the object image is pasted ,
The bounding box for the pasted object is calculated as (x, (x+w), y , (y+h))
box = (x, (w+w), y , (y+h)) # w,h are width and height of the object image
I am converting this to yolo annotation using this function :
def convert_boxes_to_yolo(box, frame):
# frame is a tuple containing background image width and height
# x = box[0][0]
# y = box[0][1]
# w = box[1][0] - box[0][0]
# h = box[1][1] - box[0][1]
x,y,w,h = box
print( frame.shape)
xc = float((x + w/2.0) / frame.shape[1])
yc = float((y + h/2.0) / frame.shape[0])
wc = float(w / frame.shape[1])
hc = float(h / frame.shape[0])
return (str(xc), str(yc), str(wc), str(hc))
and using this function to plot the bounding box , which looks correct :
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('Omen_6_image_generated.png')
dh, dw, _ = img.shape
#dh, dw = (35, 400)
fl = open('Omen_6_image_generated.txt', 'r')
data = fl.readlines()
fl.close()
for dt in data:
# Split string to float
_, x, y, w, h = map(float, dt.split())
# Taken from https://github.com/pjreddie/darknet/blob/810d7f797bdb2f021dbe65d2524c2ff6b8ab5c8b/src/image.c#L283-L291
# via https://stackoverflow.com/questions/44544471/how-to-get-the-coordinates-of-the-bounding-box-in-yolo-object-detection#comment102178409_44592380
l = int((x - w / 2) * dw)
r = int((x + w / 2) * dw)
t = int((y - h / 2) * dh)
b = int((y + h / 2) * dh)
if l < 0:
l = 0
if r > dw - 1:
r = dw - 1
if t < 0:
t = 0
if b > dh - 1:
b = dh - 1
cv2.rectangle(img, (l, t), (r, b), (0, 0, 255), 1)
image = Image.fromarray(img.astype('uint8'), 'RGB')
image.show()
The bounding box is plotted correctly but the online annotation tools are not able to parse the file.
For example the plotting code correctly plots the bounding box for the shared image and annotation file below but the AI annotation tool like https://www.makesense.ai/ is not able to parse it , also if you look the same image in labelImg results look wrong.
link to both image and yolo_file:
https://drive.google.com/drive/folders/13ZTVrzswtcvXRBo6kJAhiITxx-IzOi-_?usp=sharing

How do I stop python from drawing a new colorbar every iteration

I made this code as a CFD of sorts for fun, and I want to add a color bar to show the velocity of the fluid in different places. Unfortunately, every time it plots a new frame it also plots a new colorbar rather than refreshing the old one. I'd like to get it to refresh rather than draw a new one entirely. Any help would be appreciated. Plotting Begins on line 70
import numpy as np
from matplotlib import pyplot
plot_every = 100
def distance(x1,y1,x2,y2):
return np.sqrt((x2-x1)**2 + (y2-y1)**2)
def main():
Nx = 400 #Cells Across x direction
Ny = 100 #Cells Across y direction
#CELL <> NODE
tau = .53 #kinimatic viscosity
tymestep = tau
Nt = 30000 #total iterations
#Lattice Speeds and Velcoties
NL = 9 #There are 9 differnct velocites, (up, down, left, right, up-left diag, up-right diag, down-left diag, down-right diag, and zero)
#NL would be 27 in 3D flow
cxs = np.array([0,0,1,1,1,0,-1,-1,-1]) #I don't know what this is
cys = np.array([0,1,1,0,-1,-1,-1,0,1]) #I don't know what this is
weights = np.array([4/9,1/9,1/36,1/9,1/36,1/9,1/36,1/9,1/36])
#COMPLETELY DIFFERNT WEIGTS FOR 2D AND 3D FLOW
#Initial Conditions
F = np.ones((Ny,Nx,NL)) + 0.01*np.random.randn(Ny,Nx,NL)
F[:,:,3] = 2.3 #Assigning an inital speed in x direction with right as posative
#Drawing Our cylinder
cylinder = np.full((Ny,Nx), False)
radius = 13
for y in range(0,Ny):
for x in range(0,Nx):
if (distance(Nx//4,Ny//2,x,y) < radius):
cylinder[y][x] = True
#main loop
for it in range(Nt):
#print(it)
F[:,-1, [6,7,8]] = F[:,-2, [6,7,8]] #without this, fluid will bounce off of outside walls (you may want this to happen)
F[:,0, [2,3,4]] = F[:,1, [2,3,4]] #without this, fluid will bounce off of outside walls (you may want this to happen)
for i, cx, cy in zip(range(NL),cxs, cys): #this line is sligtly differnt than his because I think he made a typo
F[:,:,i] = np.roll(F[:,:,i], cx, axis = 1)
F[:,:,i] = np.roll(F[:,:,i], cy, axis = 0)
bndryF = F[cylinder,:]
bndryF = bndryF[:, [0,5,6,7,8,1,2,3,4]] #defines what happens in a colsion (reverse the velocity). This works by setting the up vel to down vel etc
#Fluid Variables
rho = np.sum(F,2) #density
ux = np.sum(F * cxs, 2)/rho #x velocity (momentum/mass)
uy = np.sum(F * cys, 2)/rho #y velocity
F[cylinder,: ] = bndryF
ux[cylinder] = 0 #set all velocities in cylinder = 0
uy[cylinder] = 0 #set all velocities in cylinder = 0
#collisions
Feq = np.zeros(F.shape)
for i, cx, cy, w in zip(range(NL), cxs, cys, weights):
Feq[:, :, i] = rho * w * (
1 + 3*(cx*ux + cy*uy) + 9*(cx*ux + cy*uy)**2/2 - 3*(ux**2 + uy**2)/2
)
F += -1/tau * (F-Feq)
if(it%plot_every == 0):
dfydx = ux[2:, 1:-1] - ux[0:-2, 1: -1]
dfxdy = uy[1: -1, 2:] - uy[1: -1, 0: -2]
curl = dfydx - dfxdy
pyplot.imshow(np.sqrt(ux**2+uy**2),cmap = "bwr")
#pyplot.imshow(curl, cmap = "bwr")
pyplot.colorbar(label="Velocity", orientation="horizontal")
pyplot.pause(0.01)
pyplot.cla()
if __name__ == "__main__":
main()
In your code you are adding a new colorbar at every iteration.
As far as I know, it is impossible to update a colorbar. The workaround is to delete the colorbar of the previous time step, and replace it with a new one.
This is achieved by the update_colorbar function in the code below.
import numpy as np
from matplotlib import pyplot
from matplotlib.cm import ScalarMappable
from matplotlib.colors import Normalize
plot_every = 100
def distance(x1,y1,x2,y2):
return np.sqrt((x2-x1)**2 + (y2-y1)**2)
def update_colorbar(fig, cmap, param, norm=None):
"""The name is misleading: here we create a new colorbar which will be
placed on the same colorbar axis as the original.
"""
# colorbar axes
cax = None
if len(fig.axes) > 1:
cax = fig.axes[-1]
# remove the previous colorbar, if present
if cax is not None:
cax.clear()
if norm is None:
norm = Normalize(vmin=np.amin(param), vmax=np.amax(param))
mappable = ScalarMappable(cmap=cmap, norm=norm)
fig.colorbar(mappable, orientation="horizontal", label="Velocity", cax=cax)
def main():
Nx = 400 #Cells Across x direction
Ny = 100 #Cells Across y direction
#CELL <> NODE
tau = .53 #kinimatic viscosity
tymestep = tau
Nt = 30000 #total iterations
#Lattice Speeds and Velcoties
NL = 9 #There are 9 differnct velocites, (up, down, left, right, up-left diag, up-right diag, down-left diag, down-right diag, and zero)
#NL would be 27 in 3D flow
cxs = np.array([0,0,1,1,1,0,-1,-1,-1]) #I don't know what this is
cys = np.array([0,1,1,0,-1,-1,-1,0,1]) #I don't know what this is
weights = np.array([4/9,1/9,1/36,1/9,1/36,1/9,1/36,1/9,1/36])
#COMPLETELY DIFFERNT WEIGTS FOR 2D AND 3D FLOW
#Initial Conditions
F = np.ones((Ny,Nx,NL)) + 0.01*np.random.randn(Ny,Nx,NL)
F[:,:,3] = 2.3 #Assigning an inital speed in x direction with right as posative
#Drawing Our cylinder
cylinder = np.full((Ny,Nx), False)
radius = 13
for y in range(0,Ny):
for x in range(0,Nx):
if (distance(Nx//4,Ny//2,x,y) < radius):
cylinder[y][x] = True
fig, ax = pyplot.subplots()
cmap = "bwr"
#main loop
for it in range(Nt):
# clear previous images
ax.images.clear()
#print(it)
F[:,-1, [6,7,8]] = F[:,-2, [6,7,8]] #without this, fluid will bounce off of outside walls (you may want this to happen)
F[:,0, [2,3,4]] = F[:,1, [2,3,4]] #without this, fluid will bounce off of outside walls (you may want this to happen)
for i, cx, cy in zip(range(NL),cxs, cys): #this line is sligtly differnt than his because I think he made a typo
F[:,:,i] = np.roll(F[:,:,i], cx, axis = 1)
F[:,:,i] = np.roll(F[:,:,i], cy, axis = 0)
bndryF = F[cylinder,:]
bndryF = bndryF[:, [0,5,6,7,8,1,2,3,4]] #defines what happens in a colsion (reverse the velocity). This works by setting the up vel to down vel etc
#Fluid Variables
rho = np.sum(F,2) #density
ux = np.sum(F * cxs, 2)/rho #x velocity (momentum/mass)
uy = np.sum(F * cys, 2)/rho #y velocity
F[cylinder,: ] = bndryF
ux[cylinder] = 0 #set all velocities in cylinder = 0
uy[cylinder] = 0 #set all velocities in cylinder = 0
#collisions
Feq = np.zeros(F.shape)
for i, cx, cy, w in zip(range(NL), cxs, cys, weights):
Feq[:, :, i] = rho * w * (
1 + 3*(cx*ux + cy*uy) + 9*(cx*ux + cy*uy)**2/2 - 3*(ux**2 + uy**2)/2
)
F += -1/tau * (F-Feq)
if(it%plot_every == 0):
dfydx = ux[2:, 1:-1] - ux[0:-2, 1: -1]
dfxdy = uy[1: -1, 2:] - uy[1: -1, 0: -2]
curl = dfydx - dfxdy
img = np.sqrt(ux**2+uy**2)
ax.imshow(img ,cmap = cmap)
#pyplot.imshow(curl, cmap = "bwr")
update_colorbar(fig, cmap, param=img)
pyplot.pause(0.01)
if __name__ == "__main__":
main()
One thing you can definitely improve is the following line of code, which defines the values visible in the colorbar:
norm = Normalize(vmin=np.amin(param), vmax=np.amax(param))
Specifically, you'd have to choose a wise (conservative) value for vmax=. Currently, vmax=np.amax(param), but the maximum is going to change at every iteration. If I were you, I would chose a value big enough such that np.amax(param) < your_value, in order to ensure consistent colors for each time step.

Faster way to patchify a picture to overlapping blocks

I'm looking for a FAST (and if possible memory afficiant) way to rewrite a function I crerated as part of Visual bag of words algorithm:
def get_pic_patches(pic, l, s): # "s" stands for stride
r, c = pic.shape
i, j = [0, 0]
x_range = list(range(0, r, s ) )
y_range = list(range(0, c , s ) )
patches = []
patches_location = []
for x in x_range: # without last two since it will exceed dimensions
for y in y_range: # without last two since it will exceed dimensions
if x+ l<= r and y+l <= c:
patch = pic[x:x + l , y:y + l ]
patches_location.append([x, y]) # patch location is the upper left pixel
patches.append( patch )
return patches, patches_location
it takes a grayscale image (NOT RGB!), desired patch length and stride value,
and gives back all patches as a list of numpy array.
On other qestions, I found this:
def patchify(img, patch_shape):
img = np.ascontiguousarray(img) # won't make a copy if not needed
X, Y = img.shape
x, y = patch_shape
shape = ((X-x+1), (Y-y+1), x, y) # number of patches, patch_shape
strides = img.itemsize*np.array([Y, 1, Y, 1])
return np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)
in order to get to return a list, I used it like this:
def patchify(img, patch_shape):
img = np.ascontiguousarray(img) # won't make a copy if not needed
X, Y = img.shape
x, y = patch_shape
shape = ((X-x+1), (Y-y+1), x, y) # number of patches, patch_shape
strides = img.itemsize*np.array([Y, 1, Y, 1])
patches = np.lib.stride_tricks.as_strided(img, shape=shape, strides=strides)
a,b,c,d = patches.shape
patches = patches.reshape(((a*b),c,d))
patches = patches.tolist()
return
but this was actually much slower than my original function! another problem is that is only works with stride = 1, and I want to be able to use all sorts of stride values.

Using numpy.trapz() to calculate a pdf

I have some polar [R,theta] data, that I want to express as a pdf.
As I understand it, I simply normalize the data, so its integral is 1.
I am using numpy.trapz() method, but am a bit unsure of the syntax.
The code below shows what I have tried, I expect the outputs to be in a range ( 0, 1 > but they seem a bit high.
Am I using .trapz() method correctly?
Is .trapz() appropriate for circular data?
theta = np.linspace( -np.pi, np.pi, 50 )
r = np.array([ 1.23445554e-02, 3.03557798e-02, 7.02699393e-02,
1.51352457e-01, 3.00238850e-01, 5.43818199e-01,
8.93133849e-01, 1.32293971e+00, 1.76077447e+00,
2.10102936e+00, 2.24555703e+00, 2.15016660e+00,
1.84666100e+00, 1.42543142e+00, 9.91689535e-01,
6.24126941e-01, 3.56994042e-01, 1.86663166e-01,
8.98562553e-02, 4.01629846e-02, 1.68354083e-02,
6.69424846e-03, 2.55748908e-03, 9.52021934e-04,
3.50547486e-04, 1.29726513e-04, 4.90546282e-05,
1.92776373e-05, 8.00850696e-06, 3.57673721e-06,
1.74551297e-06, 9.45084654e-07, 5.75501932e-07,
3.98658528e-07, 3.16843272e-07, 2.90421340e-07,
3.07486145e-07, 3.75264328e-07, 5.25073662e-07,
8.35385632e-07, 1.49531795e-06, 2.97409444e-06,
6.48232116e-06, 1.52539070e-05, 3.81503341e-05,
9.97843762e-05, 2.68504223e-04, 7.31213584e-04,
1.98302971e-03, 5.27234229e-03
]
)
r_pdf = r / np.trapz( r, x = theta )
print r_pdf.max()
fig = plt.figure()
ax = fig.add_subplot( 111, polar = True )
ax.plot( theta, r, lw = 3 )
ax.plot( theta, r_pdf, lw = 3 )

Is there any way to use bivariate colormaps in matplotlib?

In other words, I want to make a heatmap (or surface plot) where the color varies as a function of 2 variables. (Specifically, luminance = magnitude and hue = phase.) Is there any native way to do this?
Some examples of similar plots:
Several good examples of exactly(?) what I want to do.
More examples from astronomy, but with non-perceptual hue
Edit: This is what I did with it: https://github.com/endolith/complex_colormap
imshow can take an array of [r, g, b] entries. So you can convert the absolute values to intensities and phases - to hues.
I will use as an example complex numbers, because for it it makes the most sense. If needed, you can always add numpy arrays Z = X + 1j * Y.
So for your data Z you can use e.g.
imshow(complex_array_to_rgb(Z))
where (EDIT: made it quicker and nicer thanks to this suggestion)
def complex_array_to_rgb(X, theme='dark', rmax=None):
'''Takes an array of complex number and converts it to an array of [r, g, b],
where phase gives hue and saturaton/value are given by the absolute value.
Especially for use with imshow for complex plots.'''
absmax = rmax or np.abs(X).max()
Y = np.zeros(X.shape + (3,), dtype='float')
Y[..., 0] = np.angle(X) / (2 * pi) % 1
if theme == 'light':
Y[..., 1] = np.clip(np.abs(X) / absmax, 0, 1)
Y[..., 2] = 1
elif theme == 'dark':
Y[..., 1] = 1
Y[..., 2] = np.clip(np.abs(X) / absmax, 0, 1)
Y = matplotlib.colors.hsv_to_rgb(Y)
return Y
So, for example:
Z = np.array([[3*(x + 1j*y)**3 + 1/(x + 1j*y)**2
for x in arange(-1,1,0.05)] for y in arange(-1,1,0.05)])
imshow(complex_array_to_rgb(Z, rmax=5), extent=(-1,1,-1,1))
imshow(complex_array_to_rgb(Z, rmax=5, theme='light'), extent=(-1,1,-1,1))
imshow will take an NxMx3 (rbg) or NxMx4 (grba) array so you can do your color mapping 'by hand'.
You might be able to get a bit of traction by sub-classing Normalize to map your vector to a scaler and laying out a custom color map very cleverly (but I think this will end up having to bin one of your dimensions).
I have done something like this (pdf link, see figure on page 24), but the code is in MATLAB (and buried someplace in my archives).
I agree a bi-variate color map would be useful (primarily for representing very dense vector fields where your kinda up the creek no matter what you do).
I think the obvious extension is to let color maps take complex arguments. It would require specialized sub-classes of Normalize and Colormap and I am going back and forth on if I think it would be a lot of work to implement. I suspect if you get it working by hand it will just be a matter of api wrangling.
I created an easy to use 2D colormap class, that takes 2 NumPy arrays and maps them to an RGB image, based on a reference image.
I used #GjjvdBurg's answer as a starting point. With a bit of work, this could still be improved, and possibly turned into a proper Python module - if you want, feel free to do so, I grant you all credits.
TL;DR:
# read reference image
cmap_2d = ColorMap2D('const_chroma.jpeg', reverse_x=True) # , xclip=(0,0.9))
# map the data x and y to the RGB space, defined by the image
rgb = cmap_2d(data_x, data_y)
# generate a colorbar image
cbar_rgb = cmap_2d.generate_cbar()
The ColorMap2D class:
class ColorMap2D:
def __init__(self, filename: str, transpose=False, reverse_x=False, reverse_y=False, xclip=None, yclip=None):
"""
Maps two 2D array to an RGB color space based on a given reference image.
Args:
filename (str): reference image to read the x-y colors from
rotate (bool): if True, transpose the reference image (swap x and y axes)
reverse_x (bool): if True, reverse the x scale on the reference
reverse_y (bool): if True, reverse the y scale on the reference
xclip (tuple): clip the image to this portion on the x scale; (0,1) is the whole image
yclip (tuple): clip the image to this portion on the y scale; (0,1) is the whole image
"""
self._colormap_file = filename or COLORMAP_FILE
self._img = plt.imread(self._colormap_file)
if transpose:
self._img = self._img.transpose()
if reverse_x:
self._img = self._img[::-1,:,:]
if reverse_y:
self._img = self._img[:,::-1,:]
if xclip is not None:
imin, imax = map(lambda x: int(self._img.shape[0] * x), xclip)
self._img = self._img[imin:imax,:,:]
if yclip is not None:
imin, imax = map(lambda x: int(self._img.shape[1] * x), yclip)
self._img = self._img[:,imin:imax,:]
if issubclass(self._img.dtype.type, np.integer):
self._img = self._img / 255.0
self._width = len(self._img)
self._height = len(self._img[0])
self._range_x = (0, 1)
self._range_y = (0, 1)
#staticmethod
def _scale_to_range(u: np.ndarray, u_min: float, u_max: float) -> np.ndarray:
return (u - u_min) / (u_max - u_min)
def _map_to_x(self, val: np.ndarray) -> np.ndarray:
xmin, xmax = self._range_x
val = self._scale_to_range(val, xmin, xmax)
rescaled = (val * (self._width - 1))
return rescaled.astype(int)
def _map_to_y(self, val: np.ndarray) -> np.ndarray:
ymin, ymax = self._range_y
val = self._scale_to_range(val, ymin, ymax)
rescaled = (val * (self._height - 1))
return rescaled.astype(int)
def __call__(self, val_x, val_y):
"""
Take val_x and val_y, and associate the RGB values
from the reference picture to each item. val_x and val_y
must have the same shape.
"""
if val_x.shape != val_y.shape:
raise ValueError(f'x and y array must have the same shape, but have {val_x.shape} and {val_y.shape}.')
self._range_x = (np.amin(val_x), np.amax(val_x))
self._range_y = (np.amin(val_y), np.amax(val_y))
x_indices = self._map_to_x(val_x)
y_indices = self._map_to_y(val_y)
i_xy = np.stack((x_indices, y_indices), axis=-1)
rgb = np.zeros((*val_x.shape, 3))
for indices in np.ndindex(val_x.shape):
img_indices = tuple(i_xy[indices])
rgb[indices] = self._img[img_indices]
return rgb
def generate_cbar(self, nx=100, ny=100):
"generate an image that can be used as a 2D colorbar"
x = np.linspace(0, 1, nx)
y = np.linspace(0, 1, ny)
return self.__call__(*np.meshgrid(x, y))
Usage:
Full example, using the constant chroma reference taken from here as a screenshot:
# generate data
x = y = np.linspace(-2, 2, 300)
xx, yy = np.meshgrid(x, y)
ampl = np.exp(-(xx ** 2 + yy ** 2))
phase = (xx ** 2 - yy ** 2) * 6 * np.pi
data = ampl * np.exp(1j * phase)
data_x, data_y = np.abs(data), np.angle(data)
# Here is the 2D colormap part
cmap_2d = ColorMap2D('const_chroma.jpeg', reverse_x=True) # , xclip=(0,0.9))
rgb = cmap_2d(data_x, data_y)
cbar_rgb = cmap_2d.generate_cbar()
# plot the data
fig, plot_ax = plt.subplots(figsize=(8, 6))
plot_extent = (x.min(), x.max(), y.min(), y.max())
plot_ax.imshow(rgb, aspect='auto', extent=plot_extent, origin='lower')
plot_ax.set_xlabel('x')
plot_ax.set_ylabel('y')
plot_ax.set_title('data')
# create a 2D colorbar and make it fancy
plt.subplots_adjust(left=0.1, right=0.65)
bar_ax = fig.add_axes([0.68, 0.15, 0.15, 0.3])
cmap_extent = (data_x.min(), data_x.max(), data_y.min(), data_y.max())
bar_ax.imshow(cbar_rgb, extent=cmap_extent, aspect='auto', origin='lower',)
bar_ax.set_xlabel('amplitude')
bar_ax.set_ylabel('phase')
bar_ax.yaxis.tick_right()
bar_ax.yaxis.set_label_position('right')
for item in ([bar_ax.title, bar_ax.xaxis.label, bar_ax.yaxis.label] +
bar_ax.get_xticklabels() + bar_ax.get_yticklabels()):
item.set_fontsize(7)
plt.show()
I know this is an old post, but want to help out others that may arrive late. Below is a python function to implement complex_to_rgb from sage. Note: This implementation isn't optimal, but it is readable. See links: (examples)(source code)
Code:
import numpy as np
def complex_to_rgb(z_values):
width = z_values.shape[0]
height = z_values.shape[1]
rgb = np.zeros(shape=(width, height, 3))
for i in range(width):
row = z_values[i]
for j in range(height):
# define value, real(value), imag(value)
zz = row[j]
x = np.real(zz)
y = np.imag(zz)
# define magnitued and argument
magnitude = np.hypot(x, y)
arg = np.arctan2(y, x)
# define lighness
lightness = np.arctan(np.log(np.sqrt(magnitude) + 1)) * (4 / np.pi) - 1
if lightness < 0:
bot = 0
top = 1 + lightness
else:
bot = lightness
top = 1
# define hue
hue = 3 * arg / np.pi
if hue < 0:
hue += 6
# set ihue and use it to define rgb values based on cases
ihue = int(hue)
# case 1
if ihue == 0:
r = top
g = bot + hue * (top - bot)
b = bot
# case 2
elif ihue == 1:
r = bot + (2 - hue) * (top - bot)
g = top
b = bot
# case 3
elif ihue == 2:
r = bot
g = top
b = bot + (hue - 2) * (top - bot)
# case 4
elif ihue == 3:
r = bot
g = bot + (4 - hue) * (top - bot)
b = top
# case 5
elif ihue == 4:
r = bot + (hue - 4) * (top - bot)
g = bot
b = top
# case 6
else:
r = top
g = bot
b = bot + (6 - hue) * (top - bot)
# set rgb array values
rgb[i, j, 0] = r
rgb[i, j, 1] = g
rgb[i, j, 2] = b
return rgb