I'm working on a cplex model and I'm getting stuck on two constraints that contain integrals.
(Im using cplexsoftware and not java or python)
Any idea or It's impossible to use integrals and only summation?
thank you in advance
Related
I would like to use Mosek to solve the following problem:
The constraint is convex. In the guidance of the problems that Mosek can solve I could not find a "close" example. Hence, I wonder: (1) Is Mosek suitable to solve the problem above? (2) If yes, how can I readapt the problem above to be solved by Mosek? (3) If not, could you suggest an alternative solver I might use?
Yes, the upper bound on softplus function, or more general log-sum-exp, can be modeled with the exponential cone like here https://docs.mosek.com/modeling-cookbook/expo.html#softplus-function
Here is an example where log-sum-exp is used in a bigger problem https://docs.mosek.com/latest/pythonfusion/case-studies-logistic.html#doc-case-studies-logistic
Many modeling tools that can use Mosek as a solver will have a log_sum_exp atom available directly, for instance see https://www.cvxpy.org/tutorial/functions/index.html
I am using IBM CPLEX python's API to solve a linear program.
The linear program I am solving turned out to be infeasible, so I am using feasopt() from CPLEX to relax the problem.
I could get a feasible solution through my_prob.feasopt(my_prob.feasopt.all_constraints()), where feasopt relaxes all the constraints.
But I am interested in getting the amount of relaxation for each constraint. Particularly, in the documentation it says In addition to that conventional solution vector, FeasOpt also produces a vector of values that provide useful information about infeasible constraints and variables.
I am interested in getting this vector.
I believe you are looking for the methods available under the Cplex.solution.infeasibility interface.
Example usage:
# query the infeasibilities for all linear constraints
rowinfeas = my_prob.solution.infeasibility.linear_constraints(
my_prob.solution.get_values())
Recently, I have been trying to learn a bit about CPLEX and was hoping someone could help me understand the complexity when solving for integer vs. binary constraints.
For example, say we are trying to allocate a pie around 10 people for maximum utility, where each person has a utility that is linear with the amount of pie they receive. However, we want to introduce the constraint that at least 3 people have to get a bit of pie.
What's the difference between thinking of this as a single integer constraint (number_of_people_with_pie >= 3) vs. 10 binary variables (person_1_has_pie + person_2_has_pie + ... person_10_has_pie >= 3)? I would imagine the former is simplest but wonder if there is any benefits to forming the problem in terms of binary variables?
In addition to this, any recommended reading for better understanding MIP and CPLEX would be greatly appreciated, especially in better understanding where the problem becomes NP or in what situations simplex struggles to find the global minima.
Thanks!
I agree with Alex and Erwin's comment that this really depends on what you want to model. For this particular model I disagree with Alex: to me it makes more sense to use one decision variable per person, otherwise it may become hard to figure out which person gets how much of the pie.
A problem becomes NP hard as soon as you add integrality or SOS constraints. A good reading for MIP in general is Alex Schrijver's "Theory of Integer and Linear Programming". That should cover all the topics you need for an in-depth understanding of things.
It really depends on the case but in yours I would use 1 decision variable rather than 10.
Sometimes, that's not obvious and trying and measuring can prove oneself right or wrong. And that's one of the reason why using high modeling languages can help. (Abstract modeling languages such as OPL)
I recommend a MOOC on cognitive class : https://cognitiveclass.ai/courses/mathematical-optimization-for-business-problems/
and the OPL language manual : https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/opl_languser.pdf
I haven't been able to find any reference as to what is the maximum amount of variables and constraints that minizinc's solvers can handle. Specifically I'm interested minizinc's mip solver. I've been getting stack overflow errors on my mac with 8GB when I have about 15k constraints and about 1000 variables. Does anyone know if that's something close to minizinc's real limitations?
It looks like minizinc was crashing due to too many constraints. I was able to model my problem using another open source MIP solver/optimization framework called SCIP. I had to learn how to model using mathematical language called ZIMP.
I have a simple optimization problem and am looking for java software for that.
The Apache math optimization software looks just like what I want but I cant find documentation to suit my needs (where those needs are to useful to a beginner / non maths professional!)
Does anyone know of a worked, simple, example?
In case it helps, the problem is that I want to find the max r where
r1 = s1 * m1
r2 = s2 * m2
and there are some constraints and formula for defining the relationship between the variables. The Excel Solver works fine for this problem. I got LPSolve working great, but this problem requires a multiplication of s and m, so I understand LPSolve cant help as this makes the problem non linear.
I recently ported the derivative-free non-linear constrained optimization code COBYLA2 to Java. Since it does not explicitly rely on derivatives, the algorithm may require quite a few iterations for larger problems. Nonetheless, you are able to formulate your problem with both a non-linear objective function and (potentially) non-linear constraints.
You can read more about it and download the source code from here.
I am not aware of a simple Java-based NLP solver. (I did find an example of Quadratic programming (QP) in Apache Math Works, but it doesn't qualify since you asked for a non-math professional example.)
I have two suggestions for you to solve your non-linear program:
1.. Excel's Solver does have the ability to tackle non-linear problems. (Don't use LPSOLVE.) In fact, NLP is the default mode in Solver.
Here are two links to using Excel to solve NLPs: Example 1 - Step by step Solver walk-through that covers NLP and
Example 2 - A General Neural network example in Excel
Also for Excel, I like Paul Jensen's (utexas) ORMM Add-in's.
He has a module called Teach NLP. Chapter 10 of his book deals with NLP and is available from his site.
2.. If you are going to be doing even some amount of data analysis, then I recommend investing a few hours to download and learn the basics of R.
R has numerous packages and libraries for optimization. optim() and nlme are relavant for solving non-linear programs.
Just for completeness, I mention SAS, MATLAB and CPLEX as other options. If you have access to any of these, they all do a very good job with solving non-linear programs.
Hope these pointers help.