How to invoke compiler with LD_PRELOAD in CMake - cmake

Is it possible to have CMake “export an environment variable” such as LD_PRELOAD before invoking the compiler/linker, like you could in a shell?
I am using an old 32-bit cross-compiler in WSL2. The source files are on Windows filesystem mounted into WSL, where the inodes are 64-bit thus not supported and cannot be read by the compiler.
cc1plus: error: /mydir/.../source.cpp: Value too large for defined data type
I followed instructions from The 64 bit inode problem, and built inode64.so and manually verified it works with the 32-bit cross-compiler in a shell:
export LD_PRELOAD=/mydir/.../inode64.so
arm-fsl-linux-gnueabi-g++ source.cpp
My question is, since I am building the project with CMake, how can I invoke ONLY the 32-bit compiler/linker from CMake with
LD_PRELOAD=/mydir/.../inode64.so
In my project build script, I tried export LD_PRELOAD before calling cmake, but it didn't work (because the 32-bit .so doesn't work with native 64-bit cmake tools?)
cmake ./
export LD_PRELOAD=/mydir/.../inode64.so
make install
ERROR: ld.so: object '/mydir/.../inode64.so' from LD_PRELOAD cannot be preloaded (wrong ELF class: ELFCLASS32): ignored.

Set the variable CMAKE_CXX_COMPILER_LAUNCHER to env LD_PRELOAD=whatever.so. This will use the env command to launch the compiler.
The variable is used to initialize target properties, and of 3.25 supports generator expressions, so if you are using multiple compilers in the same build, you can wrap the env command in a test for compiler version or compiler name.
If instead you are using this compiler for all c++ builds in a particular configuration, just conditionally set the variable:
if(MY_CROSS_COMPILING_32_BIT)
set(CMAKE_CXX_COMPILER_LAUNCHER env LD_PRELOAD=whatever.so)
endif()

Related

CMake automatically adds -MD -MT and -MF options [duplicate]

I would like to use the IAR compiler. I noticed CMake has already have a bunch of files about this compiler:
https://github.com/jevinskie/cmake/blob/master/Modules/Compiler/IAR.cmake
From what I read the common solution is to specify manually ALL the toolchain in my CMakeLists.txt:
set(CMAKE_C_COMPILER iccarm)
set(CMAKE_CPP_COMPILER iccarm)
How CMake can link these definitions with `Modules/Compiler/IAR.cmake"?
I thought I would just have to do
include("Modules/Compiler/IAR.cmake")
What is the correct way to specify my IAR compiler?
When I do
cmake .
It still tries to use gcc instead of my IAR compiler. Why?
To select a specific compiler, you have several solutions, as exaplained in CMake wiki:
Method 1: use environment variables
For C and C++, set the CC and CXX environment variables. This method is not guaranteed to work for all generators. (Specifically, if you are trying to set Xcode's GCC_VERSION, this method confuses Xcode.)
For example:
CC=gcc-4.2 CXX=/usr/bin/g++-4.2 cmake -G "Your Generator" path/to/your/source
Method 2: use cmake -D
Set the appropriate CMAKE_FOO_COMPILER variable(s) to a valid compiler name or full path on the command-line using cmake -D.
For example:
cmake -G "Your Generator" -D CMAKE_C_COMPILER=gcc-4.2 -D CMAKE_CXX_COMPILER=g++-4.2 path/to/your/source
Method 3 (avoid): use set()
Set the appropriate CMAKE_FOO_COMPILER variable(s) to a valid compiler name or full path in a list file using set(). This must be done before any language is set (ie: before any project() or enable_language() command).
For example:
set(CMAKE_C_COMPILER "gcc-4.2")
set(CMAKE_CXX_COMPILER "/usr/bin/g++-4.2")
project("YourProjectName")
The wiki doesn't provide reason why 3rd method should be avoided...
I see more and more people who set CMAKE_C_COMPILER and other compiler-related variables in the CMakeLists.txt after the project call and wonder why this approach breaks sometimes.
What happens actually
When CMake executes the project() call, it looks for a default compiler executable and determines the way for use it: default compiler flags, default linker flags, compile features, etc.
And CMake stores path to that default compiler executable in the CMAKE_C_COMPILER variable.
When one sets CMAKE_C_COMPILER variable after the project() call, this only changes the compiler executable: default flags, features all remains set for the default compiler.
AS RESULT: When the project is built, a build system calls the project-specified compiler executable but with parameters suitable for the default compiler.
As one could guess, this approach would work only when one replaces a default compiler with a highly compatible one. E.g. replacement of gcc with clang could work sometimes.
This approach will never work for replacement of cl compiler (used in Visual Studio) with gcc one. Nor this will work when replacing a native compiler with a cross-compiler.
What to do
Never set a compiler in CMakeLists.txt.
If you want, e.g., to use clang instead of defaulted gcc, then either:
Pass -DCMAKE_C_COMPILER=<compiler> to cmake when configure the project. That way CMake will use this compiler instead of default one and on the project() call it will adjust all flags for the specified compiler.
Set CC environment variable (CXX for C++ compiler). CMake checks this variable when selects a default compiler.
(Only in rare cases) Set CMAKE_C_COMPILER variable before the project() call. This approach is similar to the first one, but makes the project less flexible.
If the ways above do not work
If on setting CMAKE_C_COMPILER in the command line CMake errors that a compiler cannot "compile a simple project", then something wrong in your environment.. or you specify a compiler incompatible for chosen generator or platform.
Examples:
Visual Studio generators work with cl compiler but cannot work with gcc.
A MinGW compiler usually requires MinGW Makefiles generator.
Incompatible generator cannot be fixed in CMakeLists.txt. One need to pass the proper -G option to the cmake executable (or select the proper generator in CMake GUI).
Cross-compiling
Cross-compiling usually requires setting CMAKE_SYSTEM_NAME variable, and this setting should normally be done in the toolchain file. That toolchain file is also responsible for set a compiler.
Setting CMAKE_SYSTEM_NAME in the CMakeLists.txt is almost always an error.
You need to create a toolchain file, and use the CmakeForceCompiler module.
Here is an example toolchain file for bare-metal ARM development with IAR:
include(CMakeForceCompiler)
set(CMAKE_SYSTEM_NAME Generic) # Or name of your OS if you have one
set(CMAKE_SYSTEM_PROCESSOR arm) # Or whatever
set(CMAKE_CROSSCOMPILING 1)
set(CMAKE_C_COMPILER iccarm) # Change the arm suffix if appropriate
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY) # Required to make the previous line work for a target that requires a custom linker file
The last line is necessary because CMake will try to compile a test program with the compiler to make sure it works and to get some version information from preprocessor defines. Without this line, CMake will use add_executable() for the test program, and you will get the error "The C compiler "XXX" is not able to compile a simple test program." This is because the test program fails to link, as it doesn't have your custom linker file (I'm assuming bare-metal development since this is what IAR is usually used for). This line tells CMake to use add_library() instead, which makes the test succeed without the linker file. Source of this workaround: this CMake mailing list post.
Then, assuming that your toolchain file is named iar-toolchain.cmake, invoke CMake like this:
cmake -DCMAKE_TOOLCHAIN_FILE=iar-toolchain.cmake .
You can call cmake like this:
cmake -DCMAKE_C_COMPILER=iccarm ...
or
cmake -DCMAKE_CXX_COMPILER=...
If you don't want to use your PC's standard compiler, you have to give CMake the path to the compiler. You do this via environment variables, a toolchain file or direct definitions in the CMake command line (see e.g. CMake Error at CMakeLists.txt:30 (project): No CMAKE_C_COMPILER could be found).
Putting the compiler's name/path into your CMakeLists.txt would stop your project from being cross-platform.
CMake does check for the compiler ids by compiling special C/C++ files. So no need to manually include from Module/Compiler or Module/Platform.
This will be automatically done by CMake based on its compiler and platform checks.
References
CMake: In which Order are Files parsed (Cache, Toolchain, …)?
CMake GitLab Commit: Add support files for C, C++ and ASM for the IAR toolchain.
IAR Systems recently published a basic CMake tutorial with examples under their GitHub profile.
I like the the idea of a generic toolchain file which works seamlessly for both Windows and Linux compilers using find_program().
The following snippet will be used for when using C and can be used similarly for CXX:
# IAR C Compiler
find_program(CMAKE_C_COMPILER
NAMES icc${CMAKE_SYSTEM_PROCESSOR}
PATHS ${TOOLKIT}
"$ENV{ProgramFiles}/IAR Systems/*"
"$ENV{ProgramFiles\(x86\)}/IAR Systems/*"
/opt/iarsystems/bx${CMAKE_SYSTEM_PROCESSOR}
PATH_SUFFIXES bin ${CMAKE_SYSTEM_PROCESSOR}/bin
REQUIRED )
For ASM, I initially got puzzled with the NAMES but then I realized that the toolchain file was made that way for working with old Assemblers shipped with XLINK:
find_program(CMAKE_ASM_COMPILER
NAMES iasm${CMAKE_SYSTEM_PROCESSOR} a${CMAKE_SYSTEM_PROCESSOR}
PATHS ${TOOLKIT}
"$ENV{PROGRAMFILES}/IAR Systems/*"
"$ENV{ProgramFiles\(x86\)}/IAR Systems/*"
/opt/iarsystems/bx${CMAKE_SYSTEM_PROCESSOR}
PATH_SUFFIXES bin ${CMAKE_SYSTEM_PROCESSOR}/bin
REQUIRED )
Also, take a look at the full toolchain file. It will work automatically for "Arm" when the tools are installed on their default locations, otherwise it is just about updating the TOOLKIT variable and the compilers for all the supported languages should adjust automatically.
If your wanting to specify a compiler in cmake then just do ...
cmake_minimum_required(VERSION 3.22)
set(CMAKE_C_COMPILER "clang")
set(CMAKE_CXX_COMPILER "clang++")
Options 1 is only used if you want to specify what compiler you want to use as default for everything that you might compile on your computer. And I don't even think it would work on windows.
Option 2 would be used if you only want to use a different temporarily.
Option 3 is used if that's the compiler that should be used for that particular project. Also option 3 would be the most cross compatible.

How do I build a CMake project?

I have just acquired an arbitrary CMake project from the internet and I am not sure how to compile it. What commands do I need to run to build it from the command line?
Basic steps
If you're on a Unix-y operating system, like Linux or macOS, then you would run:
$ cmake -DCMAKE_BUILD_TYPE=Release -S /path/to/source-dir -B /path/to/build-dir
$ cmake --build /path/to/build-dir
Here, /path/to/source-dir is the directory containing the root-level CMakeLists.txt, this is most commonly the root of a source control repository. Meanwhile, /path/to/build-dir is a distinct directory (that does not need to exist yet) that CMake will use to store the generated build system and its outputs. This is called an out-of-tree build. You should never attempt an in-tree build with CMake because of the possibility of name clashes and difficulty involved with cleaning up the generated files.
When building with a single-config generator (like Make, which is the default on Unix), you specify the build type by setting the CMAKE_BUILD_TYPE variable in the first command, known as the configure step. You must always set this variable when working with a single-config generator. The built-in configs are Debug, Release, RelWithDebInfo, and MinSizeRel. See this answer for more detail on this.
After the configure step, you may build the project by either calling the underlying build tool (in this case, make) or by calling CMake's generic build launcher command (cmake --build), as I do here.
If you're on Windows, then the default generator is Visual Studio, which is a multi-config generator. This means the build type is chosen during the build step rather than the configure step, and the commands must be adjusted accordingly:
$ cmake -S /path/to/source-dir -B /path/to/build-dir
$ cmake --build /path/to/build-dir --config Release
These steps assume that the CMake build you are looking at is well behaved. If a project fails to build with the above steps and you have all of its dependencies installed to system locations (and they are well behaved), then you should open an issue with the upstream project. The most common source of bad behavior in mature CMake builds is dependency handling. Too often you will have to read the build or its documentation to determine which variables need to be set (via -D, like we did with CMAKE_BUILD_TYPE above) for the project to find its dependencies.
Advanced topics
Setting options and cache variables
Some projects offer options to enable/disable tests, components, features, etc. These are typically done by writing entries to the CMake cache during the configure step. For example, a common way to disable building tests is to set BUILD_TESTING to NO at the command line:
$ cmake -S /path/to/source-dir -B /path/to/binary-dir [...] -DBUILD_TESTING=NO
This particular variable is a convention, but is not guaranteed to be honored. Check the project's documentation to see which options are available.
Selecting a generator and toolchain
When using the Visual Studio generators specifically, you can tell CMake which platform you wish to target and which version of the compiler you would like to use. The full form of the CMake configure command for this is:
$ cmake -G "Visual Studio 16 2019" -A <ARCH> -T<TOOLSET> [...]
Valid values of <ARCH> include Win32, x64, ARM, and ARM64. If <TOOLSET> is not specified, then the 32-bit MSVC compiler will be used. Typically, you will want this to be host=x64 to ensure that 64-bit MSVC is used, which can allocate more memory for large linking steps. You can also set <TOOLSET> to ClangCL to use the Visual Studio provided ClangCL tools.
On all generators, CMake sniffs the environment for which compiler to use. It checks the CC and CXX environment variables for the C and C++ compilers, respectively. If those are empty, it will look for cc and c++ executables in the PATH. You can manually override the compilers by setting the CMAKE_C_COMPILER and CMAKE_CXX_COMPILER CMake cache (not environment) variables at the CMake command line (using -D again).
Installing & using dependencies
Once a CMake project has been built, you may install it either systemwide or (preferably) to a local prefix by running:
$ cmake --install /path/to/build-dir --prefix /path/to/install-dir [--config Release]
Where --config is only required if a multi-config generator was used. Once installed to a local prefix, a project that depends on it may be configured by setting CMAKE_PREFIX_PATH to /path/to/install-dir.

How to run c++ Files using g++ and Cmake?

I am using Header Only Libraries. The libraries are included through Cmake. I am using the g++ Compiler.
Now what I am looking for is to compile the c++ source files via windows cmd. In this moment i am using clion to compile.
Does anyone know how to compile the source files?
If i am compiling the files without cmake , I am getting errors because the program cannot find the libraries.
You do not run a source file, you run an executable produced by a compiler from source file(s)
If you are under a Linux for instance enter the path(s) where the libraries are through the environment variable LD_LIBRARY_PATH
[edit after your remark]
I mean compile
To indicate to g++ where the library are to link use the option -L followed by the path of a directory where the libraries are. If your libraries are on different directories use several time the option, one per directory

How to specify a compiler in CMake?

I would like to use the IAR compiler. I noticed CMake has already have a bunch of files about this compiler:
https://github.com/jevinskie/cmake/blob/master/Modules/Compiler/IAR.cmake
From what I read the common solution is to specify manually ALL the toolchain in my CMakeLists.txt:
set(CMAKE_C_COMPILER iccarm)
set(CMAKE_CPP_COMPILER iccarm)
How CMake can link these definitions with `Modules/Compiler/IAR.cmake"?
I thought I would just have to do
include("Modules/Compiler/IAR.cmake")
What is the correct way to specify my IAR compiler?
When I do
cmake .
It still tries to use gcc instead of my IAR compiler. Why?
To select a specific compiler, you have several solutions, as exaplained in CMake wiki:
Method 1: use environment variables
For C and C++, set the CC and CXX environment variables. This method is not guaranteed to work for all generators. (Specifically, if you are trying to set Xcode's GCC_VERSION, this method confuses Xcode.)
For example:
CC=gcc-4.2 CXX=/usr/bin/g++-4.2 cmake -G "Your Generator" path/to/your/source
Method 2: use cmake -D
Set the appropriate CMAKE_FOO_COMPILER variable(s) to a valid compiler name or full path on the command-line using cmake -D.
For example:
cmake -G "Your Generator" -D CMAKE_C_COMPILER=gcc-4.2 -D CMAKE_CXX_COMPILER=g++-4.2 path/to/your/source
Method 3 (avoid): use set()
Set the appropriate CMAKE_FOO_COMPILER variable(s) to a valid compiler name or full path in a list file using set(). This must be done before any language is set (ie: before any project() or enable_language() command).
For example:
set(CMAKE_C_COMPILER "gcc-4.2")
set(CMAKE_CXX_COMPILER "/usr/bin/g++-4.2")
project("YourProjectName")
The wiki doesn't provide reason why 3rd method should be avoided...
I see more and more people who set CMAKE_C_COMPILER and other compiler-related variables in the CMakeLists.txt after the project call and wonder why this approach breaks sometimes.
What happens actually
When CMake executes the project() call, it looks for a default compiler executable and determines the way for use it: default compiler flags, default linker flags, compile features, etc.
And CMake stores path to that default compiler executable in the CMAKE_C_COMPILER variable.
When one sets CMAKE_C_COMPILER variable after the project() call, this only changes the compiler executable: default flags, features all remains set for the default compiler.
AS RESULT: When the project is built, a build system calls the project-specified compiler executable but with parameters suitable for the default compiler.
As one could guess, this approach would work only when one replaces a default compiler with a highly compatible one. E.g. replacement of gcc with clang could work sometimes.
This approach will never work for replacement of cl compiler (used in Visual Studio) with gcc one. Nor this will work when replacing a native compiler with a cross-compiler.
What to do
Never set a compiler in CMakeLists.txt.
If you want, e.g., to use clang instead of defaulted gcc, then either:
Pass -DCMAKE_C_COMPILER=<compiler> to cmake when configure the project. That way CMake will use this compiler instead of default one and on the project() call it will adjust all flags for the specified compiler.
Set CC environment variable (CXX for C++ compiler). CMake checks this variable when selects a default compiler.
(Only in rare cases) Set CMAKE_C_COMPILER variable before the project() call. This approach is similar to the first one, but makes the project less flexible.
If the ways above do not work
If on setting CMAKE_C_COMPILER in the command line CMake errors that a compiler cannot "compile a simple project", then something wrong in your environment.. or you specify a compiler incompatible for chosen generator or platform.
Examples:
Visual Studio generators work with cl compiler but cannot work with gcc.
A MinGW compiler usually requires MinGW Makefiles generator.
Incompatible generator cannot be fixed in CMakeLists.txt. One need to pass the proper -G option to the cmake executable (or select the proper generator in CMake GUI).
Cross-compiling
Cross-compiling usually requires setting CMAKE_SYSTEM_NAME variable, and this setting should normally be done in the toolchain file. That toolchain file is also responsible for set a compiler.
Setting CMAKE_SYSTEM_NAME in the CMakeLists.txt is almost always an error.
You need to create a toolchain file, and use the CmakeForceCompiler module.
Here is an example toolchain file for bare-metal ARM development with IAR:
include(CMakeForceCompiler)
set(CMAKE_SYSTEM_NAME Generic) # Or name of your OS if you have one
set(CMAKE_SYSTEM_PROCESSOR arm) # Or whatever
set(CMAKE_CROSSCOMPILING 1)
set(CMAKE_C_COMPILER iccarm) # Change the arm suffix if appropriate
set(CMAKE_TRY_COMPILE_TARGET_TYPE STATIC_LIBRARY) # Required to make the previous line work for a target that requires a custom linker file
The last line is necessary because CMake will try to compile a test program with the compiler to make sure it works and to get some version information from preprocessor defines. Without this line, CMake will use add_executable() for the test program, and you will get the error "The C compiler "XXX" is not able to compile a simple test program." This is because the test program fails to link, as it doesn't have your custom linker file (I'm assuming bare-metal development since this is what IAR is usually used for). This line tells CMake to use add_library() instead, which makes the test succeed without the linker file. Source of this workaround: this CMake mailing list post.
Then, assuming that your toolchain file is named iar-toolchain.cmake, invoke CMake like this:
cmake -DCMAKE_TOOLCHAIN_FILE=iar-toolchain.cmake .
You can call cmake like this:
cmake -DCMAKE_C_COMPILER=iccarm ...
or
cmake -DCMAKE_CXX_COMPILER=...
If you don't want to use your PC's standard compiler, you have to give CMake the path to the compiler. You do this via environment variables, a toolchain file or direct definitions in the CMake command line (see e.g. CMake Error at CMakeLists.txt:30 (project): No CMAKE_C_COMPILER could be found).
Putting the compiler's name/path into your CMakeLists.txt would stop your project from being cross-platform.
CMake does check for the compiler ids by compiling special C/C++ files. So no need to manually include from Module/Compiler or Module/Platform.
This will be automatically done by CMake based on its compiler and platform checks.
References
CMake: In which Order are Files parsed (Cache, Toolchain, …)?
CMake GitLab Commit: Add support files for C, C++ and ASM for the IAR toolchain.
IAR Systems recently published a basic CMake tutorial with examples under their GitHub profile.
I like the the idea of a generic toolchain file which works seamlessly for both Windows and Linux compilers using find_program().
The following snippet will be used for when using C and can be used similarly for CXX:
# IAR C Compiler
find_program(CMAKE_C_COMPILER
NAMES icc${CMAKE_SYSTEM_PROCESSOR}
PATHS ${TOOLKIT}
"$ENV{ProgramFiles}/IAR Systems/*"
"$ENV{ProgramFiles\(x86\)}/IAR Systems/*"
/opt/iarsystems/bx${CMAKE_SYSTEM_PROCESSOR}
PATH_SUFFIXES bin ${CMAKE_SYSTEM_PROCESSOR}/bin
REQUIRED )
For ASM, I initially got puzzled with the NAMES but then I realized that the toolchain file was made that way for working with old Assemblers shipped with XLINK:
find_program(CMAKE_ASM_COMPILER
NAMES iasm${CMAKE_SYSTEM_PROCESSOR} a${CMAKE_SYSTEM_PROCESSOR}
PATHS ${TOOLKIT}
"$ENV{PROGRAMFILES}/IAR Systems/*"
"$ENV{ProgramFiles\(x86\)}/IAR Systems/*"
/opt/iarsystems/bx${CMAKE_SYSTEM_PROCESSOR}
PATH_SUFFIXES bin ${CMAKE_SYSTEM_PROCESSOR}/bin
REQUIRED )
Also, take a look at the full toolchain file. It will work automatically for "Arm" when the tools are installed on their default locations, otherwise it is just about updating the TOOLKIT variable and the compilers for all the supported languages should adjust automatically.
If your wanting to specify a compiler in cmake then just do ...
cmake_minimum_required(VERSION 3.22)
set(CMAKE_C_COMPILER "clang")
set(CMAKE_CXX_COMPILER "clang++")
Options 1 is only used if you want to specify what compiler you want to use as default for everything that you might compile on your computer. And I don't even think it would work on windows.
Option 2 would be used if you only want to use a different temporarily.
Option 3 is used if that's the compiler that should be used for that particular project. Also option 3 would be the most cross compatible.

What's the difference between CMAKE_INSTALL_PREFIX and CMAKE_INSTALL_RPATH

I have a difficult time in understanding the difference between CMAKE_INSTALL_PREFIX and CMAKE_INSTALL_RPATH.
If I understand well, CMAKE_INSTALL_PREFIX is the prefixed directory that will be installed. Therefore, if I use the following script for installation:
project(hello)
add_library(hello hello.h hello.cpp)
set(CMAKE_INSTALL_PREFIX "c:/ABC/DEF")
INSTALL(TARGETS hello EXPORT hello_export
RUNTIME DESTINATION bin
LIBRARY DESTINATION bin
ARCHIVE DESTINATION lib
FRAMEWORK DESTINATION bin
INCLUDES DESTINATION include
)
Then the static library will be installed in C:/ABC/DEF/lib.
Then, my question is what's the point of using CMAKE_INSTALL_RPATH?
On a system which supports paths of the form c:/ABC/DEF (i.e. Windows), none. Windows binaries don't have a notion of rpath.
On systems which do have DT_RPATH and DT_RUNPATH (= those which use ELF binaries), the CMake variable CMAKE_INSTALL_RPATH is used to set up the value of DT_RPATH (or DT_RUNPATH) tags which will be written into the binaries at installation.
This is explained at CMake RPATH handling.
On Unix systems, dynamic libraries are searched for in a system-defined list of directories. (/etc/ld.so.conf -- Windows does this in its own way that is so convoluted that it usually boils down to "just use PATH". 😉)
If you install a library (like the one you just compiled) in a custom directory, not in that list, it will not be found if you run a dependent executable. RPATH is one way to fix this.
See the Wiki page linked above for details.
Firstly, CMAKE_INSTALL_PREFIX determines a "root" for the installed location of headers, libraries, executables, and other resources.
On a system which does not support the notion of a "search hierachy" for dependencies, CMAKE_INSTALL_RPATH is not used. However, on ELF-based systems (e.g. Linux) and Mach-based systems (e.g. macOS 10.5 and later) a set of additional locations to search can be set in executables and dynamic libraries (e.g. .so/.dylib files); this is the "Rpath" and you can set it during cmake's install phase, either for all targets by setting CMAKE_INSTALL_RPATH or for individual targets by setting INSTALL_RPATH on that target.
Static libraries are not dynamic (obviously!) so, CMAKE_INSTALL_RPATH has no utility at all for static libraries.
When installing dynamic objects, CMake will write the Rpath into the dynamic object provided CMAKE_SKIP_RPATH and CMAKE_SKIP_INSTALL_RPATH are both false. By default, the Rpath written will be set to CMAKE_INSTALL_PREFIX followed by the library destination, e.g. CMAKE_INSTALL_PREFIX/lib. On Linux systems, this would by default see an Rpath of /usr/local/lib written as Rpath.
You can examine the Rpath on Linux thus:
readelf -d libmylib.so
which produces something like:
0x000000000000000f (RPATH) Library rpath: [/usr/local/lib]
or on macOS:
otool -l libmylib.dylib | grep -A 2 LC_RPATH
which produces something like:
cmd LC_RPATH
cmdsize 40
path #loader_path/../Frameworks (offset 12)
To override the install Rpath you can set the variable CMAKE_INSTALL_RPATH. E.g. on Linux:
set(CMAKE_INSTALL_RPATH "\$ORIGIN/../lib")
or on macOS:
set(CMAKE_INSTALL_RPATH "#loader_path/../lib")