Use mobilenet ssd instead of efficientdet lite - tensorflow

#Create whichever object detector's spec you want
spec = object_detector.EfficientDetLite4Spec(
model_name='efficientdet-lite4',
uri='https://tfhub.dev/tensorflow/efficientdet/lite4/feature-vector/2',
hparams='', #enable grad_checkpoint=True if you want
model_dir=checkpoint_dir,
epochs=epochs,
batch_size=batch_size,
steps_per_execution=1,
moving_average_decay=0,
var_freeze_expr='(efficientnet|fpn_cells|resample_p6)',
tflite_max_detections=25,
strategy=None,
tpu=None,
gcp_project=None,
tpu_zone=None,
use_xla=False,
profile=False,
debug=False,
tf_random_seed=111111,
verbose=1
)
How to use mobilenet ssd V1 instead of efficientdet lite4 and what could be imported to do so

Related

Loaded model gives either 0 or 1 with Keras

Im using Kaggle to train my model. My model definition is as follows:
from tensorflow.keras.applications import EfficientNetB4
from tensorflow.keras.models import Model
base_model = EfficientNetB4(input_tensor=Input(shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
weights='imagenet',
include_top=False,
pooling='avg'
)
x=base_model.output
output=Dense(1, activation='sigmoid')(x)
model=Model(inputs=base_model.input, outputs=output)
model.summary()
After fitting the model, I'm saving the model with this:
MODEL_DIR = "../working/tfx_model/"
version = "alpha"
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))
tf.keras.models.save_model(
model,
export_path,
overwrite=True,
include_optimizer=True,
save_format=None,
signatures=None,
options=None
)
print('\nSaved model:')
!ls -l {export_path}
Im simply importing the model to my local computer with the following:
model = load_model('models/tfx_model')
However the result of model.predict(input_image) returns an array of 0 or 1. However on Kaggle, I can have the confidence values.
I have already suspected a weird bug with EfficientNet implementation of Keras yet I haven't found anything on the subject. Also I tried saving .h5 and weights only and it had still the same issue.
The model is not over-fitted.
Kaggle environment versions:
'Tensorflow Version 2.9.2,Keras Version:2.9.0'
Local environment versions:
'Tensorflow Version 2.10.0,Keras Version:2.10.0'
It is probably due to different keras versions.
To get the probabilities try:
model.predict_proba(input_image)
After a certain keras version (I think 2.6), predict and predict_proba return probabilities but for previous versions predict returns 0 or 1

How to manually load pretrained model if I can't download it using TensorFlow

I am trying to download the VGG19 model via TensorFlow
base_model = VGG19(input_shape = [256,256,3],
include_top = False,
weights = 'imagenet')
However the download always gets stuck before it finishes downloading. I've tried with different models too like InceptionV3 and the same happens there.
Fortunately, the prompt makes the link available where the model can be downloaded manually
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgg19/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
19546112/80134624 [======>.......................] - ETA: 11s
After downloading the model from the given link I try to import the model using
base_model = load_model('vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5')
but I get this error
ValueError: No model found in config file.
How do I load in the downloaded .h5 model manually?
You're using load_model on weights, instead of a model. You need to have a defined model first, then load the weights.
weights = "path/to/weights"
model = VGG19 # the defined model
model.load_weights(weights) # the weights
Got the same problem when learning on tensorflow tutorial, too.
Transfer learning and fine-tuning: Create the base model from the pre-trained convnets
# Create the base model from the pre-trained model MobileNet V2
IMG_SIZE = (160, 160)
IMG_SHAPE = IMG_SIZE + (3,)
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False, weights=None)
# load model weights manually
weights = 'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_160_no_top.h5'
base_model.load_weights(weights)
I tried download the model.h5, and load manually. It works.
`

How to save model weights in tf keras when training on TPUs?

I want to save weights of a model I trained on kaggle's TPUs, but I'm getting an error. Its a known bug and one work around is saving the weights to cpu from the TPU. Is there any other workaround this bug?
From Tensorflow 2.3 and tf-nightly you can use tf.saved_model.LoadOptions with tf.saved_model.LoadOptions="/job:localhost" to save/restorer a TPU model on local file system:
model_dir = "./mnist_model"
localhost_save_option = tf.saved_model.SaveOptions(experimental_io_device="/job:localhost")
model.save(model_dir, options=localhost_save_option)
# Restore the weights
model2 = tf.keras.models.load_model(model_dir, options=localhost_save_option)

Upgrade Tensorflow model or Retrain for SavedModel

I followed "Tensorflow for poets" in 2017 and retrained my own collection of images and created "retrained_graph.pb" and "retrained_labels.txt"
Today I need to run this model on Tensorflow Serving.
There are two options to accomplish this:
Upgrade the old model to save it as under the "saved_model" format and use it on Tensorflow Serving - I found some SO postings to acccomplish it (this or
that).
Use the latest tensorflow Hub with Keras (https://www.tensorflow.org/tutorials/images/hub_with_keras)
I am looking for the best option among these, or a new one.
In my opinion, either using Tensorflow Hub or using the Pre-Trained Models inside tf.keras.applications is preferable because, in either cases, there won't be many code changes required to Save the Model, to make it compatible for Tensorflow Serving.
The code for reusing the Pre-Trained Model, MobileNet which is present inside tf.keras.applications is shown below:
#Import MobileNet V2 with pre-trained weights AND exclude fully connected layers
IMG_SIZE = 224
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras import Model
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3)
# Create the base model from the pre-trained model MobileNet V2
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
include_top=False,
weights='imagenet')
# Add Global Average Pooling Layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# Add a Output Layer
my_mobilenetv2_output = Dense(5, activation='softmax')(x)
# Combine whole Neural Network
my_mobilenetv2_model = Model(inputs=base_model.input, outputs=my_mobilenetv2_output)
You can Save the Model using the Code given below:
version = 1
MODEL_DIR = 'Image_Classification_Model'
export_path = os.path.join(MODEL_DIR, str(version))
tf.keras.models.save_model(model = model, filepath = export_path)

How can I convert a trained Tensorflow model to Keras?

I have a trained Tensorflow model and weights vector which have been exported to protobuf and weights files respectively.
How can I convert these to JSON or YAML and HDF5 files which can be used by Keras?
I have the code for the Tensorflow model, so it would also be acceptable to convert the tf.Session to a keras model and save that in code.
I think the callback in keras is also a solution.
The ckpt file can be saved by TF with:
saver = tf.train.Saver()
saver.save(sess, checkpoint_name)
and to load checkpoint in Keras, you need a callback class as follow:
class RestoreCkptCallback(keras.callbacks.Callback):
def __init__(self, pretrained_file):
self.pretrained_file = pretrained_file
self.sess = keras.backend.get_session()
self.saver = tf.train.Saver()
def on_train_begin(self, logs=None):
if self.pretrian_model_path:
self.saver.restore(self.sess, self.pretrian_model_path)
print('load weights: OK.')
Then in your keras script:
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
restore_ckpt_callback = RestoreCkptCallback(pretrian_model_path='./XXXX.ckpt')
model.fit(x_train, y_train, batch_size=128, epochs=20, callbacks=[restore_ckpt_callback])
That will be fine.
I think it is easy to implement and hope it helps.
Francois Chollet, the creator of keras, stated in 04/2017 "you cannot turn an arbitrary TensorFlow checkpoint into a Keras model. What you can do, however, is build an equivalent Keras model then load into this Keras model the weights"
, see https://github.com/keras-team/keras/issues/5273 . To my knowledge this hasn't changed.
A small example:
First, you can extract the weights of a tensorflow checkpoint like this
PATH_REL_META = r'checkpoint1.meta'
# start tensorflow session
with tf.Session() as sess:
# import graph
saver = tf.train.import_meta_graph(PATH_REL_META)
# load weights for graph
saver.restore(sess, PATH_REL_META[:-5])
# get all global variables (including model variables)
vars_global = tf.global_variables()
# get their name and value and put them into dictionary
sess.as_default()
model_vars = {}
for var in vars_global:
try:
model_vars[var.name] = var.eval()
except:
print("For var={}, an exception occurred".format(var.name))
It might also be of use to export the tensorflow model for use in tensorboard, see https://stackoverflow.com/a/43569991/2135504
Second, you build you keras model as usually and finalize it by "model.compile". Pay attention that you need to give you define each layer by name and add it to the model after that, e.g.
layer_1 = keras.layers.Conv2D(6, (7,7), activation='relu', input_shape=(48,48,1))
net.add(layer_1)
...
net.compile(...)
Third, you can set the weights with the tensorflow values, e.g.
layer_1.set_weights([model_vars['conv7x7x1_1/kernel:0'], model_vars['conv7x7x1_1/bias:0']])
Currently, there is no direct in-built support in Tensorflow or Keras to convert the frozen model or the checkpoint file to hdf5 format.
But since you have mentioned that you have the code of Tensorflow model, you will have to rewrite that model's code in Keras. Then, you will have to read the values of your variables from the checkpoint file and assign it to Keras model using layer.load_weights(weights) method.
More than this methodology, I would suggest to you to do the training directly in Keras as it claimed that Keras' optimizers are 5-10% times faster than Tensorflow's optimizers. Other way is to write your code in Tensorflow with tf.contrib.keras module and save the file directly in hdf5 format.
Unsure if this is what you are looking for, but I happened to just do the same with the newly released keras support in TF 1.2. You can find more on the API here: https://www.tensorflow.org/api_docs/python/tf/contrib/keras
To save you a little time, I also found that I had to include keras modules as shown below with the additional python.keras appended to what is shown in the API docs.
from tensorflow.contrib.keras.python.keras.models import Sequential
Hope that helps get you where you want to go. Essentially once integrated in, you then just handle your model/weight export as usual.