I'm trying to convert String to Int. The String can contain number as Int or as Double. But I need to convert string to Int anyway.
Here is my code:
val str = "999.13"
val number = str.toDoubleOrNull()?.roundToInt() ?: 0 // number will be 999
It works but there is one problem. If the source string will contain a very large number, for example 99999999999, then I get an incorrect number. After casting the string to a double, I lose precision.
What is the best way to perform such a manipulation without loss of precision? I would like to refrain from using BigDecimal, BigInteger etc.
Perhaps there is a more elegant solution for kotlin, please help me.
There's no way for Double and Long to hold bigger values than their largest possible values, so of course you will lose precision. That's why BigDecimal/BigInteger exist. They are the only ways to handle numbers that are bigger than the largest values Double and Long can handle, unless you want to handle parsing of the String yourself (note, you are parsing with toDoubleOrNull(), not casting).
I'm not sure why you'd want to avoid BigDecimal, but you could split the number at the decimal place, use toIntOrNull() or toLongOrNull() on the first part of the String and use toFloatOrNull() on the second part so you can round it to either 0 or 1 and add that to the first part to do the rounding:
val result = if ("." !in input)
input.toIntOrNull()
else {
val (firstPart, secondPart) = input.split(".")
val integerPart = firstPart.toIntOrNull()
integerPart?.let { it + (".$secondPart".toFloatOrNull()?.roundToInt() ?: 0) }
}
It would be a bit easier to use BigDecimal.
val result = runCatching {
BigDecimal(input).setScale(0, RoundingMode.HALF_UP).toInt()
}.getOrNull()
Both of the above would be simpler if you already know your input is valid.
Hi this is my first ever program I'm tryin to write in android studio/Kotlin and I'm not sure how to proceed.
so in my program i have a few math tasks to do and it does it fine but what I need to do now is separate part of the answer then covert it then print out both parts
for example if my answer was 1.5232 i would like to convert the decimal part of the answer to a string that matches a range if its in it. the ranges I have are in the .0000 area so I would like to limit the decimal range too.
so final result would look like this
1 (whatever my string in range is)
I hope I included enough info thank you in advance.
The first part of the task is to split the number into the integer and fractional components:
val input = 1.5232
val integer = input.toInt() // rounds DOWN to nearest smaller Int
val fractional = input % 1.0 // The remainder when dividing by 1.0 is the fraction
The strategy I would use to round to the nearest fractional value given a certain precision is to multiply by that precision, and round to the nearest integer. That would give you the numerator, and the precision would be the denominator:
val denominator = 8 // fractional precision
val numerator = (fractional * denominator).roundToInt() // rounds up or down to nearest Int
Then to put it together, you can use a string template:
val result = "$integer $numerator/$denominator"
println(result)
Simplifying the fraction would be another task if you need that. You can find various algorithms for finding greatest common divisor of two numbers. Use one of those and divide the numerator and denominator by that value.
I have a list of nine numbers (1-9), that I need to shuffle based on a seed, and guarantee that each permutation of that shuffle is unique. I'd like to do that like this:
list.shuffle(Random(seed))
There are 9! (362,880) possible permutations of this list, and I know that if I pass it the same Random seed twice, those two permutations will be identical, but I need a way to guarantee that for any given seed between 0 and 362,880, the list order will be unique from any other seed in that range.
Is this possible in Kotlin?
This isn't really a question about Kotlin, but algorithms in general.
There could be much better solution, but you can represent your seed as a number with variable base. First digit has base of 9, second has base of 8 and so on. When dealing with numbers of base 10, we need to repeatedly divide it by 10 and note the remainder to split it into digits. In our case we need to divide it by 9, 8, 7 and so on. This way we will convert the seed to a list of 9 digits like this: 0-8, 0-7, 0-6, ... . What is important: each seed has a unique list of such digits.
Now, if we create another list of numbers 1-9, then we can use the list of digits from the previous paragraph to pick numbers from it, removing them at the same time. Initially, we have 9 items in our list, so valid indexes are 0-8 and this is exactly the range of our first digit. Then we have only 8 remaining items, so they have indexes 0-7 and this is exactly what the second digit is. And so on.
This is not that easy to explain in words, code could be better:
fun shuffled1to9(seed: Int): List<Int> {
require(seed in 0 until 362880)
val remaining = (1..9).toMutableList()
val result = mutableListOf<Int>()
var curr = seed
(9 downTo 2).forEach {
val (next, pick) = curr divmod it
result += remaining.removeAt(pick)
curr = next
}
result += remaining.single()
return result
}
infix fun Int.divmod(divisor: Int): Pair<Int, Int> {
val quotient = this / divisor
return quotient to (this - quotient * divisor)
}
shuffled1to9(0) returns original order of 1..9. shuffled1to9(362879) returns the order inverted: 9..1. Any number in between should generate a unique ordering.
Of course, it can be very easily generalized to different lists of numbers and to different sizes.
I have recently sat a computing exam in university in which we were never taught beforehand about the modulus function or any other check for odd/even function and we have no access to external documentation except our previous lecture notes. Is it possible to do this without these and how?
Bitwise AND (&)
Extract the last bit of the number using the bitwise AND operator. If the last bit is 1, then it's odd, else it's even. This is the simplest and most efficient way of testing it. Examples in some languages:
C / C++ / C#
bool is_even(int value) {
return (value & 1) == 0;
}
Java
public static boolean is_even(int value) {
return (value & 1) == 0;
}
Python
def is_even(value):
return (value & 1) == 0
I assume this is only for integer numbers as the concept of odd/even eludes me for floating point values.
For these integer numbers, the check of the Least Significant Bit (LSB) as proposed by Rotem is the most straightforward method, but there are many other ways to accomplish that.
For example, you could use the integer division operation as a test. This is one of the most basic operation which is implemented in virtually every platform. The result of an integer division is always another integer. For example:
>> x = int64( 13 ) ;
>> x / 2
ans =
7
Here I cast the value 13 as a int64 to make sure MATLAB treats the number as an integer instead of double data type.
Also here the result is actually rounded towards infinity to the next integral value. This is MATLAB specific implementation, other platform might round down but it does not matter for us as the only behavior we look for is the rounding, whichever way it goes. The rounding allow us to define the following behavior:
If a number is even: Dividing it by 2 will produce an exact result, such that if we multiply this result by 2, we obtain the original number.
If a number is odd: Dividing it by 2 will result in a rounded result, such that multiplying it by 2 will yield a different number than the original input.
Now you have the logic worked out, the code is pretty straightforward:
%% sample input
x = int64(42) ;
y = int64(43) ;
%% define the checking function
% uses only multiplication and division operator, no high level function
is_even = #(x) int64(x) == (int64(x)/2)*2 ;
And obvisouly, this will yield:
>> is_even(x)
ans =
1
>> is_even(y)
ans =
0
I found out from a fellow student how to solve this simplistically with maths instead of functions.
Using (-1)^n :
If n is odd then the outcome is -1
If n is even then the outcome is 1
This is some pretty out-of-the-box thinking, but it would be the only way to solve this without previous knowledge of complex functions including mod.
int x = n / 3; // <-- make this faster
// for instance
int a = n * 3; // <-- normal integer multiplication
int b = (n << 1) + n; // <-- potentially faster multiplication
The guy who said "leave it to the compiler" was right, but I don't have the "reputation" to mod him up or comment. I asked gcc to compile int test(int a) { return a / 3; } for an ix86 and then disassembled the output. Just for academic interest, what it's doing is roughly multiplying by 0x55555556 and then taking the top 32 bits of the 64 bit result of that. You can demonstrate this to yourself with eg:
$ ruby -e 'puts(60000 * 0x55555556 >> 32)'
20000
$ ruby -e 'puts(72 * 0x55555556 >> 32)'
24
$
The wikipedia page on Montgomery division is hard to read but fortunately the compiler guys have done it so you don't have to.
This is the fastest as the compiler will optimize it if it can depending on the output processor.
int a;
int b;
a = some value;
b = a / 3;
There is a faster way to do it if you know the ranges of the values, for example, if you are dividing a signed integer by 3 and you know the range of the value to be divided is 0 to 768, then you can multiply it by a factor and shift it to the left by a power of 2 to that factor divided by 3.
eg.
Range 0 -> 768
you could use shifting of 10 bits, which multiplying by 1024, you want to divide by 3 so your multiplier should be 1024 / 3 = 341,
so you can now use (x * 341) >> 10
(Make sure the shift is a signed shift if using signed integers), also make sure the shift is an actually shift and not a bit ROLL
This will effectively divide the value 3, and will run at about 1.6 times the speed as a natural divide by 3 on a standard x86 / x64 CPU.
Of course the only reason you can make this optimization when the compiler cant is because the compiler does not know the maximum range of X and therefore cannot make this determination, but you as the programmer can.
Sometime it may even be more beneficial to move the value into a larger value and then do the same thing, ie. if you have an int of full range you could make it an 64-bit value and then do the multiply and shift instead of dividing by 3.
I had to do this recently to speed up image processing, i needed to find the average of 3 color channels, each color channel with a byte range (0 - 255). red green and blue.
At first i just simply used:
avg = (r + g + b) / 3;
(So r + g + b has a maximum of 768 and a minimum of 0, because each channel is a byte 0 - 255)
After millions of iterations the entire operation took 36 milliseconds.
I changed the line to:
avg = (r + g + b) * 341 >> 10;
And that took it down to 22 milliseconds, its amazing what can be done with a little ingenuity.
This speed up occurred in C# even though I had optimisations turned on and was running the program natively without debugging info and not through the IDE.
See How To Divide By 3 for an extended discussion of more efficiently dividing by 3, focused on doing FPGA arithmetic operations.
Also relevant:
Optimizing integer divisions with Multiply Shift in C#
Depending on your platform and depending on your C compiler, a native solution like just using
y = x / 3
Can be fast or it can be awfully slow (even if division is done entirely in hardware, if it is done using a DIV instruction, this instruction is about 3 to 4 times slower than a multiplication on modern CPUs). Very good C compilers with optimization flags turned on may optimize this operation, but if you want to be sure, you are better off optimizing it yourself.
For optimization it is important to have integer numbers of a known size. In C int has no known size (it can vary by platform and compiler!), so you are better using C99 fixed-size integers. The code below assumes that you want to divide an unsigned 32-bit integer by three and that you C compiler knows about 64 bit integer numbers (NOTE: Even on a 32 bit CPU architecture most C compilers can handle 64 bit integers just fine):
static inline uint32_t divby3 (
uint32_t divideMe
) {
return (uint32_t)(((uint64_t)0xAAAAAAABULL * divideMe) >> 33);
}
As crazy as this might sound, but the method above indeed does divide by 3. All it needs for doing so is a single 64 bit multiplication and a shift (like I said, multiplications might be 3 to 4 times faster than divisions on your CPU). In a 64 bit application this code will be a lot faster than in a 32 bit application (in a 32 bit application multiplying two 64 bit numbers take 3 multiplications and 3 additions on 32 bit values) - however, it might be still faster than a division on a 32 bit machine.
On the other hand, if your compiler is a very good one and knows the trick how to optimize integer division by a constant (latest GCC does, I just checked), it will generate the code above anyway (GCC will create exactly this code for "/3" if you enable at least optimization level 1). For other compilers... you cannot rely or expect that it will use tricks like that, even though this method is very well documented and mentioned everywhere on the Internet.
Problem is that it only works for constant numbers, not for variable ones. You always need to know the magic number (here 0xAAAAAAAB) and the correct operations after the multiplication (shifts and/or additions in most cases) and both is different depending on the number you want to divide by and both take too much CPU time to calculate them on the fly (that would be slower than hardware division). However, it's easy for a compiler to calculate these during compile time (where one second more or less compile time plays hardly a role).
For 64 bit numbers:
uint64_t divBy3(uint64_t x)
{
return x*12297829382473034411ULL;
}
However this isn't the truncating integer division you might expect.
It works correctly if the number is already divisible by 3, but it returns a huge number if it isn't.
For example if you run it on for example 11, it returns 6148914691236517209. This looks like a garbage but it's in fact the correct answer: multiply it by 3 and you get back the 11!
If you are looking for the truncating division, then just use the / operator. I highly doubt you can get much faster than that.
Theory:
64 bit unsigned arithmetic is a modulo 2^64 arithmetic.
This means for each integer which is coprime with the 2^64 modulus (essentially all odd numbers) there exists a multiplicative inverse which you can use to multiply with instead of division. This magic number can be obtained by solving the 3*x + 2^64*y = 1 equation using the Extended Euclidean Algorithm.
What if you really don't want to multiply or divide? Here is is an approximation I just invented. It works because (x/3) = (x/4) + (x/12). But since (x/12) = (x/4) / 3 we just have to repeat the process until its good enough.
#include <stdio.h>
void main()
{
int n = 1000;
int a,b;
a = n >> 2;
b = (a >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
b = (b >> 2);
a += b;
printf("a=%d\n", a);
}
The result is 330. It could be made more accurate using b = ((b+2)>>2); to account for rounding.
If you are allowed to multiply, just pick a suitable approximation for (1/3), with a power-of-2 divisor. For example, n * (1/3) ~= n * 43 / 128 = (n * 43) >> 7.
This technique is most useful in Indiana.
I don't know if it's faster but if you want to use a bitwise operator to perform binary division you can use the shift and subtract method described at this page:
Set quotient to 0
Align leftmost digits in dividend and divisor
Repeat:
If that portion of the dividend above the divisor is greater than or equal to the divisor:
Then subtract divisor from that portion of the dividend and
Concatentate 1 to the right hand end of the quotient
Else concatentate 0 to the right hand end of the quotient
Shift the divisor one place right
Until dividend is less than the divisor:
quotient is correct, dividend is remainder
STOP
For really large integer division (e.g. numbers bigger than 64bit) you can represent your number as an int[] and perform division quite fast by taking two digits at a time and divide them by 3. The remainder will be part of the next two digits and so forth.
eg. 11004 / 3 you say
11/3 = 3, remaineder = 2 (from 11-3*3)
20/3 = 6, remainder = 2 (from 20-6*3)
20/3 = 6, remainder = 2 (from 20-6*3)
24/3 = 8, remainder = 0
hence the result 3668
internal static List<int> Div3(int[] a)
{
int remainder = 0;
var res = new List<int>();
for (int i = 0; i < a.Length; i++)
{
var val = remainder + a[i];
var div = val/3;
remainder = 10*(val%3);
if (div > 9)
{
res.Add(div/10);
res.Add(div%10);
}
else
res.Add(div);
}
if (res[0] == 0) res.RemoveAt(0);
return res;
}
If you really want to see this article on integer division, but it only has academic merit ... it would be an interesting application that actually needed to perform that benefited from that kind of trick.
Easy computation ... at most n iterations where n is your number of bits:
uint8_t divideby3(uint8_t x)
{
uint8_t answer =0;
do
{
x>>=1;
answer+=x;
x=-x;
}while(x);
return answer;
}
A lookup table approach would also be faster in some architectures.
uint8_t DivBy3LU(uint8_t u8Operand)
{
uint8_t ai8Div3 = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ....];
return ai8Div3[u8Operand];
}