translate bounding box anotation from [xmin, ymin, width, height] to YOLOv7 - yolo

I'm struggling with translating coordinates from [xmin, ymin, width, height] to YOLOv7 representation, could someone help me, please?
For example my image is width = 9477px, hight = 23354px,
the annotation for [xmin, ymin, width, height] is :
[2009 21947 207 251]
I would like to know how I translate it to YoloV7 coordinates.

got an answer to it:
def convert_bbox_coco2yolo(img_width, img_height, bbox):
"""
Convert bounding box from COCO format to YOLO format
Parameters
----------
img_width : int
width of image
img_height : int
height of image
bbox : list[int]
bounding box annotation in COCO format:
[top left x position, top left y position, width, height]
Returns
-------
list[float]
bounding box annotation in YOLO format:
[x_center_rel, y_center_rel, width_rel, height_rel]
"""
# YOLO bounding box format: [x_center, y_center, width, height]
# (float values relative to width and height of image)
x_tl, y_tl, w, h = bbox
dw = 1.0 / img_width
dh = 1.0 / img_height
x_center = x_tl + w / 2.0
y_center = y_tl + h / 2.0
x = x_center * dw
y = y_center * dh
w = w * dw
h = h * dh
return [x, y, w, h]

Related

set_position and set_size_inches does not work properly when overlaying imshow and scatter in matplotlib

I am trying to create an image from a matrix z2 over a raster defined by np.meshgrid(grid_x, grid_y) such that the value of the image at vx=grid_x[i], vy=grid_y[j] is z2[i, j]. On top of this image, I am trying to add a scatter plot of a number of points obtained by three vectors x, y, z such that the i-th point has the coordinate (x[k], y[k]) and the value z[k]. All of these scattered points lies within the region of the aforementioned raster.
Here's an example of the aforementioned data I am trying to plot.
import numpy as np
np.random.seed(1)
z2 = np.ones((1000, 1000)) * 0.66
z2[0, 0] = 0
z2[-1, -1] = 1
x = np.random.rand(1000) * 1000
y = np.random.rand(1000) * 1000
z = np.random.rand(1000)
grid_x = np.linspace(0, 999, 1000)
grid_y = np.linspace(0, 999, 1000)
In order to do this, I am using a 2D plot where the x and y values are used to define the position of the points and z is indicated by a color drawn from a colormap.
What is required of this image is that 1) there should be no white space between the actual plot and the edge of the figure; 2) the unit length on the x and y axis should be equal; 3) the image should not be too large. In order to achieve these, I am using the following code for plotting.
import matplotlib.pyplot as plt
from matplotlib import cm
def plot_img(x, y, z, grid_x, grid_y, z2, set_fig_size=True):
# determine the figure size
if set_fig_size:
height, width = np.array(z2.shape, dtype=float)
dpi = max(max(640 // height, 640 // width), 1)
width, height = width * dpi, height * dpi
plt.gcf().set_size_inches(width, height)
plt.gcf().set_dpi(dpi)
# plot the figure
plt.gca().axis('off')
plt.gca().axis('equal')
plt.gca().set_position([0, 0, 1, 1])
plt.xlim((grid_x[0], grid_x[-1]))
plt.ylim((grid_y[0], grid_y[-1]))
# the raster
cmap = cm.get_cmap('gray')
cmap.set_bad(color='red', alpha=0.5)
plt.imshow(z2, cmap=cmap, interpolation='none', origin='lower',
extent=(grid_x[0], grid_x[-1], grid_y[0], grid_y[-1]))
# the scatter plot
min_z, max_z = np.min(z), np.max(z)
c = (z - min_z) / (max_z - min_z)
plt.scatter(x, y, marker='o', c=c, cmap='Greens')
plt.show()
Strangely, when I run plot_img(x, y, z, grid_x, grid_y, z2) using the aforementioned example data, the following image shows up.
Essentially, only the raster data got plotted, while the scattered data is not.
I then tried plot_img(x, y, z, grid_x, grid_y, z2, set_fig_size=False). The result is
Note that here to clearly show the white spaces in the figure, I kept the background of PyCharm surrounding it. Essentially, there are white spaces that I do not wish included in this figure.
I wonder why this is happening, and how I can fix the code to get the correct output, which is essentially the second result without the white spaces. Thanks!
Replace your dpi and figsize code by
# determine the figure size
height, width = np.array(z2.shape, dtype=float)
dpi = 200
# get size in inches:
width, height = height / dpi, width / dpi
plt.gcf().set_size_inches(width, height)
plt.gcf().set_dpi(dpi)
and you will have a 1000x1000 pixel figure, which at 200 dpi is 5"x5".

How do I determine the [fig]size of a matplotlib.image.AxesImage in pixel?

This code renders the Lenna image with matplotlib,
import urllib
import matplotlib.pyplot as plt
imgurl = 'https://upload.wikimedia.org/wikipedia/en/thumb/7/7d/Lenna_%28test_image%29.png/330px-Lenna_%28test_image%29.png'
f = urllib.request.urlopen(imgurl)
img = plt.imread(f)
axi = plt.imshow(img)
where axi is an instance of matplotlib.image.AxesImage
How do I determine the [fig]size of the AxesImage in pixel? the expected value might (330, 330)
I tried axi.get_window_extent() and got
Bbox([[112.68, 36.00000000000003], [330.12, 253.44000000000003]])
Where do those values (112.68, 330.12) come from?
To get the raw image size
Use AxesImage.get_size():
axi.get_size()
# (330, 330)
To convert the axes extent into pixels
Adjust the window extent by Figure.dpi:
axi = plt.imshow(img)
fig = plt.gcf()
bbox = axi.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
width = bbox.width * fig.dpi
height = bbox.height * fig.dpi
# 334.79999999999995 217.43999999999997
The reason this is not 330x330 is because of how plt.imshow() handles the aspect ratio. If you plot with aspect='auto', the underlying axes' shape becomes visible:
axi = plt.imshow(img, aspect='auto')
To coerce the underlying axes into desired shape
Manually define figsize and rect using the pixel dimensions and desired dpi:
width_px, height_px, _ = img.shape
dpi = 96
figsize = (width_px / dpi, height_px / dpi) # inches
rect = [0, 0, 1, 1] # [left, bottom, width, height] as fraction of figsize
fig = plt.figure(figsize=figsize, dpi=dpi) # in inches
axes = fig.add_axes(rect=rect)
axi = axes.imshow(img, aspect='auto')
Then the extent pixels will be exactly 330x330:
bbox = axi.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
width = bbox.width * fig.dpi
height = bbox.height * fig.dpi
# 330.0 330.0
axi.get_size() gives (330,330) - why not use that?

Crop image to bounding box in Tensorflow Object Detection API

How can I crop an image to the bounding box in Tensorflow? I am using the Python API.
From the documentation,
tf.image.crop_to_bounding_box(image, offset_height, offset_width, target_height, target_width)
Crops an image to a specified bounding box.
This op cuts a rectangular part out of image. The top-left corner of the returned image is at offset_height, offset_width in image, and its lower-right corner is at offset_height + target_height, offset_width + target_width.
I can get the coordinates of a bounding box in normalized coordinates as,
ymin = boxes[0,i,0]
xmin = boxes[0,i,1]
ymax = boxes[0,i,2]
xmax = boxes[0,i,3]
and convert these to absolute coordinates,
(xminn, xmaxx, yminn, ymaxx) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height)
However I cant figure out how to use these coordinates in the crop_to_bounding_box function.
Since we consider x as horizontal and y as vertical, following would crop the image with specified box.
cropped_image = tf.image.crop_to_bounding_box(image, yminn, xminn,
ymaxx - yminn, xmaxx - xminn)
Below is working code from cropping and saving bounding box in in tensorflow
for idx in range(len(bboxes)):
if bscores[idx] >= Threshold:
#Region of Interest
y_min = int(bboxes[idx][0] * im_height)
x_min = int(bboxes[idx][1] * im_width)
y_max = int(bboxes[idx][2] * im_height)
x_max = int(bboxes[idx][3] * im_width)
class_label = category_index[int(bclasses[idx])]['name']
class_labels.append(class_label)
bbox.append([x_min, y_min, x_max, y_max, class_label, float(bscores[idx])])
#Crop Image - Working Code
cropped_image = tf.image.crop_to_bounding_box(image, y_min, x_min, y_max - y_min, x_max - x_min).numpy().astype(np.int32)
# encode_jpeg encodes a tensor of type uint8 to string
output_image = tf.image.encode_jpeg(cropped_image)
# decode_jpeg decodes the string tensor to a tensor of type uint8
#output_image = tf.image.decode_jpeg(output_image)
score = bscores[idx] * 100
file_name = tf.constant(OUTPUT_PATH+image_name[:-4]+'_'+str(idx)+'_'+class_label+'_'+str(round(score))+'%'+'_'+os.path.splitext(image_name)[1])
writefile = tf.io.write_file(file_name, output_image)

How to make matplotlib Density Map

Let's say I have two lists, x and y of same length. This length is not fixed, but always nonzero. They are x and y values of non-negative points.
I want to create a a color density map much like http://www.mathworks.com/matlabcentral/fx_files/31726/1/datadensitymap.jpg .
Here's my attempt borrowing from a few places I've found on the internet:
density = stats.gaussian_kde([x,y])
color = density([x,y])
x1 = np.array(x)
y1 = np.array(y)
xmin = x1.min()
xmax = x1.max()
ymin = y1.min()
ymax = y1.max()
xscale = (xmax-xmin)/100
yscale = (ymax-ymin)/100
X, Y = np.mgrid[xmin:xmax:xscale, ymin:ymax:yscale]
positions = np.vstack([X.ravel(), Y.ravel()])
Z = np.reshape(density(positions).T, X.shape)
cmap = plt.get_cmap("hot")
plt.imshow(np.rot90(Z), cmap=cmap, extent=[xmin, xmax, ymin, ymax])
plt.scatter(x, y, c=color, cmap=cmap)
When I run this code the plot doesn't render; the title and labels are mashed together.
When I take out the call to imshow, the scatterplot shows perfectly with the density colors on the points showing correctly.
As it turns out, the plot was rendering, but because x had values much larger than y the rendered graph had no height. Setting aspect="auto" fixed it:
plt.imshow(np.rot90(Z), cmap=cmap, extent=[xmin, xmax, ymin, ymax], aspect="auto")

Annotating ranges of data in matplotlib

How can I annotate a range of my data? E.g., say the data from x = 5 to x = 10 is larger than some cut-off, how could I indicate that on the graph. If I was annotating by hand, I would just draw a large bracket above the range and write my annotation above the bracket.
The closest I've seen is using arrowstyle='<->' and connectionstyle='bar', to make two arrows pointing to the edges of your data with a line connecting their tails. But that doesn't quite do the right thing; the text that you enter for the annotation will end up under one of the arrows, rather than above the bar.
Here is my attempt, along with it's results:
annotate(' ', xy=(1,.5), xycoords='data',
xytext=(190, .5), textcoords='data',
arrowprops=dict(arrowstyle="<->",
connectionstyle="bar",
ec="k",
shrinkA=5, shrinkB=5,
)
)
Another problem with my attempted solution is that the squared shape of the annotating bracket does not really make it clear that I am highlighting a range (unlike, e.g., a curly brace). But I suppose that's just being nitpicky at this point.
As mentioned in this answer, you can construct curly brackets with sigmoidal functions. Below is a function that adds curly brackets just above the x-axis. The curly brackets it produces should look the same regardless of the axes limits, as long as the figure width and height don't vary.
import numpy as np
import matplotlib.pyplot as plt
def draw_brace(ax, xspan, text):
"""Draws an annotated brace on the axes."""
xmin, xmax = xspan
xspan = xmax - xmin
ax_xmin, ax_xmax = ax.get_xlim()
xax_span = ax_xmax - ax_xmin
ymin, ymax = ax.get_ylim()
yspan = ymax - ymin
resolution = int(xspan/xax_span*100)*2+1 # guaranteed uneven
beta = 300./xax_span # the higher this is, the smaller the radius
x = np.linspace(xmin, xmax, resolution)
x_half = x[:resolution//2+1]
y_half_brace = (1/(1.+np.exp(-beta*(x_half-x_half[0])))
+ 1/(1.+np.exp(-beta*(x_half-x_half[-1]))))
y = np.concatenate((y_half_brace, y_half_brace[-2::-1]))
y = ymin + (.05*y - .01)*yspan # adjust vertical position
ax.autoscale(False)
ax.plot(x, y, color='black', lw=1)
ax.text((xmax+xmin)/2., ymin+.07*yspan, text, ha='center', va='bottom')
ax = plt.gca()
ax.plot(range(10))
draw_brace(ax, (0, 8), 'large brace')
draw_brace(ax, (8, 9), 'small brace')
Output:
I modified Joooeey's answer to allow to change the vertical position of braces:
def draw_brace(ax, xspan, yy, text):
"""Draws an annotated brace on the axes."""
xmin, xmax = xspan
xspan = xmax - xmin
ax_xmin, ax_xmax = ax.get_xlim()
xax_span = ax_xmax - ax_xmin
ymin, ymax = ax.get_ylim()
yspan = ymax - ymin
resolution = int(xspan/xax_span*100)*2+1 # guaranteed uneven
beta = 300./xax_span # the higher this is, the smaller the radius
x = np.linspace(xmin, xmax, resolution)
x_half = x[:int(resolution/2)+1]
y_half_brace = (1/(1.+np.exp(-beta*(x_half-x_half[0])))
+ 1/(1.+np.exp(-beta*(x_half-x_half[-1]))))
y = np.concatenate((y_half_brace, y_half_brace[-2::-1]))
y = yy + (.05*y - .01)*yspan # adjust vertical position
ax.autoscale(False)
ax.plot(x, y, color='black', lw=1)
ax.text((xmax+xmin)/2., yy+.07*yspan, text, ha='center', va='bottom')
ax = plt.gca()
ax.plot(range(10))
draw_brace(ax, (0, 8), -0.5, 'large brace')
draw_brace(ax, (8, 9), 3, 'small brace')
Output:
Also note that in Joooeey's answer, line
x_half = x[:resolution/2+1]
should be
x_half = x[:int(resolution/2)+1]
Otherwise, the number that the script tries to use as index here is a float.
Finally, note that right now the brace will not show up if you move it out of bounds. You need to add parameter clip_on=False, like this:
ax.plot(x, y, color='black', lw=1, clip_on=False)
You can just wrap it all up in a function:
def add_range_annotation(ax, start, end, txt_str, y_height=.5, txt_kwargs=None, arrow_kwargs=None):
"""
Adds horizontal arrow annotation with text in the middle
Parameters
----------
ax : matplotlib.Axes
The axes to draw to
start : float
start of line
end : float
end of line
txt_str : string
The text to add
y_height : float
The height of the line
txt_kwargs : dict or None
Extra kwargs to pass to the text
arrow_kwargs : dict or None
Extra kwargs to pass to the annotate
Returns
-------
tuple
(annotation, text)
"""
if txt_kwargs is None:
txt_kwargs = {}
if arrow_kwargs is None:
# default to your arrowprops
arrow_kwargs = {'arrowprops':dict(arrowstyle="<->",
connectionstyle="bar",
ec="k",
shrinkA=5, shrinkB=5,
)}
trans = ax.get_xaxis_transform()
ann = ax.annotate('', xy=(start, y_height),
xytext=(end, y_height),
transform=trans,
**arrow_kwargs)
txt = ax.text((start + end) / 2,
y_height + .05,
txt_str,
**txt_kwargs)
if plt.isinteractive():
plt.draw()
return ann, txt
Alternately,
start, end = .6, .8
ax.axvspan(start, end, alpha=.2, color='r')
trans = ax.get_xaxis_transform()
ax.text((start + end) / 2, .5, 'test', transform=trans)
Here is a minor modification to guzey and jooeey's answer to plot the flower braces outside the axes.
def draw_brace(ax, xspan, yy, text):
"""Draws an annotated brace outside the axes."""
xmin, xmax = xspan
xspan = xmax - xmin
ax_xmin, ax_xmax = ax.get_xlim()
xax_span = ax_xmax - ax_xmin
ymin, ymax = ax.get_ylim()
yspan = ymax - ymin
resolution = int(xspan/xax_span*100)*2+1 # guaranteed uneven
beta = 300./xax_span # the higher this is, the smaller the radius
x = np.linspace(xmin, xmax, resolution)
x_half = x[:int(resolution/2)+1]
y_half_brace = (1/(1.+np.exp(-beta*(x_half-x_half[0])))
+ 1/(1.+np.exp(-beta*(x_half-x_half[-1]))))
y = np.concatenate((y_half_brace, y_half_brace[-2::-1]))
y = yy + (.05*y - .01)*yspan # adjust vertical position
ax.autoscale(False)
ax.plot(x, -y, color='black', lw=1, clip_on=False)
ax.text((xmax+xmin)/2., -yy-.17*yspan, text, ha='center', va='bottom')
# Sample code
fmax = 1
fstart = -100
fend = 0
frise = 50
ffall = 20
def S(x):
if x<=0:
return 0
elif x>=1:
return 1
else:
return 1/(1+np.exp((1/(x-1))+(1/x)))
x = np.linspace(700,1000,500)
lam = [fmax*(S((i-880)/60)-S(((i-1000)/25)+1)) for i in x]
fig = plt.figure(1)
ax = fig.add_subplot(111)
plt.plot(x,lam)
plt.xlim([850,1000])
ax.set_aspect(50,adjustable='box')
plt.ylabel('$\lambda$')
plt.xlabel('$x$')
ax.xaxis.set_label_coords(0.5, -0.35)
draw_brace(ax, (900,950),0.2, 'rise')
draw_brace(ax, (980,1000),0.2, 'fall')
plt.text(822,0.95,'$(\lambda_{\mathrm{max}})$')
Sample output
a minor modification of the draw_brace of #Joooeey and #guezy to have also the brace upside down
+argument upsidedown
def draw_brace(ax, xspan, yy, text, upsidedown=False):
"""Draws an annotated brace on the axes."""
# shamelessly copied from https://stackoverflow.com/questions/18386210/annotating-ranges-of-data-in-matplotlib
xmin, xmax = xspan
xspan = xmax - xmin
ax_xmin, ax_xmax = ax.get_xlim()
xax_span = ax_xmax - ax_xmin
ymin, ymax = ax.get_ylim()
yspan = ymax - ymin
resolution = int(xspan/xax_span*100)*2+1 # guaranteed uneven
beta = 300./xax_span # the higher this is, the smaller the radius
x = np.linspace(xmin, xmax, resolution)
x_half = x[:int(resolution/2)+1]
y_half_brace = (1/(1.+np.exp(-beta*(x_half-x_half[0])))
+ 1/(1.+np.exp(-beta*(x_half-x_half[-1]))))
if upsidedown:
y = np.concatenate((y_half_brace[-2::-1], y_half_brace))
else:
y = np.concatenate((y_half_brace, y_half_brace[-2::-1]))
y = yy + (.05*y - .01)*yspan # adjust vertical position
ax.autoscale(False)
line = ax.plot(x, y, color='black', lw=1)
if upsidedown:
text = ax.text((xmax+xmin)/2., yy+-.07*yspan, text, ha='center', va='bottom',fontsize=7)
else:
text = ax.text((xmax+xmin)/2., yy+.07*yspan, text, ha='center', va='bottom',fontsize=7)
return line, text
I updated the previous answers to have some of the features I wanted, like an option for a vertical brace, that I wanted to place in multi-plot figures. One still has to futz with the beta_scale parameter sometimes depending on the scale of the data that one is applying this to.
def rotate_point(x, y, angle_rad):
cos,sin = np.cos(angle_rad),np.sin(angle_rad)
return cos*x-sin*y,sin*x+cos*y
def draw_brace(ax, span, position, text, text_pos, brace_scale=1.0, beta_scale=300., rotate=False, rotate_text=False):
'''
all positions and sizes are in axes units
span: size of the curl
position: placement of the tip of the curl
text: label to place somewhere
text_pos: position for the label
beta_scale: scaling for the curl, higher makes a smaller radius
rotate: true rotates to place the curl vertically
rotate_text: true rotates the text vertically
'''
# get the total width to help scale the figure
ax_xmin, ax_xmax = ax.get_xlim()
xax_span = ax_xmax - ax_xmin
resolution = int(span/xax_span*100)*2+1 # guaranteed uneven
beta = beta_scale/xax_span # the higher this is, the smaller the radius
# center the shape at (0, 0)
x = np.linspace(-span/2., span/2., resolution)
# calculate the shape
x_half = x[:int(resolution/2)+1]
y_half_brace = (1/(1.+np.exp(-beta*(x_half-x_half[0])))
+ 1/(1.+np.exp(-beta*(x_half-x_half[-1]))))
y = np.concatenate((y_half_brace, y_half_brace[-2::-1]))
# put the tip of the curl at (0, 0)
max_y = np.max(y)
min_y = np.min(y)
y /= (max_y-min_y)
y *= brace_scale
y -= max_y
# rotate the trace before shifting
if rotate:
x,y = rotate_point(x, y, np.pi/2)
# shift to the user's spot
x += position[0]
y += position[1]
ax.autoscale(False)
ax.plot(x, y, color='black', lw=1, clip_on=False)
# put the text
ax.text(text_pos[0], text_pos[1], text, ha='center', va='bottom', rotation=90 if rotate_text else 0)