centre the peak at x=0 - numpy

Right now the rectangle signal is centre on x = 4, how can I make it centre on x = 0
def rect(n,T):
a = np.zeros(int((n-T)/2,))
b = np.ones((T,))
c= np.zeros(int((n-T)/2,))
a1 = np.append(a,b)
a2 = np.append(a1,c)
return a2
x =rect(11,6)
plt.step(x, 'r')
plt.show()
This is so far that I wrote. Appreciate anyone can give the Idea

A method to center the rectangle at x=0 is to provide x values to plt.step. One way to accomplish this is to use numpy arange and center the x values around 0 by using the length of a2 returned in the rects function
# Changed to y because it will be our y values in plt.step
y = rect(11, 6)
# Add 0.5 so it's centered
x = np.arange(-len(y)/2 + 0.5, len(y)/2 + 0.5)
And then plot it using plt.step and setting where to mid (more info in the plt.step docs):
plt.step(x, y, where='mid', color='r')
Hope this helps. Here is the full code:
import numpy as np
import matplotlib.pyplot as plt
def rect(n, T):
a = np.zeros(int((n-T)/2,))
b = np.ones((T,))
c = np.zeros(int((n-T)/2,))
a1 = np.append(a, b)
a2 = np.append(a1, c)
return a2
y = rect(11, 6)
# Add 0.5 so it's centered
x = np.arange(-len(y)/2 + 0.5, len(y)/2 + 0.5)
plt.step(x, y, where='mid', color='r')
plt.show()

Related

Plot multiple graphs without using a for loop

So, my question may not be exactly what is in the title.
I have a function
y = a*x + b
And I want to plot y whith different values of b.
I know that I can do the following:
import numpy as np
import matplotlib.pyplot as plt
a = 2
x = np.array([0,1,2,3,4])
b = 0
for i in range(10):
y = a*x + b
b = b+1
plt.plot(x,y)
And that returns exactly what I want.
But, there is someway that I can make this by using
b = np.array([0,1,2,3,4,5,6,7,8,9])? So, then my code could look something like:
import numpy as np
import matplotlib.pyplot as plt
a = 2
x = np.array([0,1,2,3,4])
b = np.array([0,1,2,3,4,5,6,7,8,9])
y = a*x + b
plt.plot(x,y)
Yes, you can use matrix operations to create a 2D matrix with the result of the operation y = a*x + b.
a = 2
x = np.array([0,1,2,3,4])
b = np.array([0,1,2,3,4,5,6,7,8,9])
y = a*x[:,None]+b
plt.plot(x, y)
EDIT: I'm shwing the solution provided by #Quang Hoang which is much simpler than mine.
original code was:
y = np.tile(a*x, (b.size,1)) + b[:,np.newaxis]
plt.plot(x, y.T)

How to set 'y > 0' formula in set_xlim of matplotlib?

I want to set x range according to y value in plotting graph such as y > 0 but I'm not sure how to set this one. Could you let me know how to set it?
df = pd.read_csv(file.csv)
x = np.array(df1['A'])
y = np.array(df1['B'])
z = np.array(df1['C'])
x_for_ax1 = np.ma.masked_where((y < 0) | (y > 100), x)
fig, (ax2, ax1) = plt.subplots(ncols=1, nrows=2)
# range of ax1.set_xlim and ax1.set_xlim is same.
ax1.set_ylim([-10, 40])
ax2.set_ylim([-5, 5])
ax1.set_xlim([x_for_ax1.min(), x_for_ax1.max()])
ax2.set_xlim([x_for_ax1.min(), x_for_ax1.max()])
If you want to set the x-limits to the range of the y-axis, you can use a masked array and get its minimum and maximum.
In the example below, at the left both subplots get the x-limits where either y or z are in range. At the right, each subplot only gets the x-range where its corresponding y is in range.
For demonstration purposes, the example creates a data frame from some dummy data.
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
a = np.linspace(-1, 4, 500)
b = np.sin(a) * 100
c = np.cos(a) * 150
df = pd.DataFrame({'A': a, 'B': b, 'C': c})
x = np.array(df['A'])
y = np.array(df['B'])
z = np.array(df['C'])
fig, ((ax1, ax3),(ax2, ax4)) = plt.subplots(ncols=2, nrows=2)
ax1.set_xlabel('x')
ax2.set_xlabel('x')
ax3.set_xlabel('x')
ax4.set_xlabel('x')
ax1.set_ylabel('y')
ax3.set_ylabel('y')
ax2.set_ylabel('z')
ax4.set_ylabel('z')
ymin = 1
ymax = 100
zmin = 1
zmax = 150
x_for_ax1 = np.ma.masked_where(((y < ymin) | (y > ymax)) & ((z < zmin) | (z > zmax)), x)
x_for_ax3 = np.ma.masked_where((y < ymin) | (y > ymax), x)
x_for_ax4 = np.ma.masked_where((z < zmin) | (z > zmax), x)
ax1.plot(x, y)
ax3.plot(x, y)
ax1.set_ylim([ymin, ymax])
ax3.set_ylim([ymin, ymax])
ax2.plot(x, z)
ax4.plot(x, z)
ax2.set_ylim([zmin, zmax])
ax4.set_ylim([zmin, zmax])
ax1.set_xlim([x_for_ax1.min(), x_for_ax1.max()])
ax2.set_xlim([x_for_ax1.min(), x_for_ax1.max()])
ax1.set_title('x limited to y and z range')
ax2.set_title('x limited to y and z range')
ax3.set_xlim([x_for_ax3.min(), x_for_ax3.max()])
ax3.set_title('x limited to y range')
ax4.set_xlim([x_for_ax4.min(), x_for_ax4.max()])
ax4.set_title('x limited to z range')
plt.tight_layout(w_pad=1)
plt.show()

How to plot 4-D data embedded in a dataframe in Julia using a subplots approach?

I have a Julia DataFrame where the first 4 columns are dimensions and the 5th one contains the actual data.
I would like to plot it using a subplots approach where the two main plot axis concern the first two dimensions and each subplot then is a contour plot over the remaining two dimensions.
I am almost there with the above code:
using DataFrames,Plots
# plotlyjs() # doesn't work with plotlyjs backend
pyplot()
X = [1,2,3,4]
Y = [0.1,0.15,0.2]
I = [2,4,6,8,10,12,14]
J = [10,20,30,40,50,60]
df = DataFrame(X=Int64[], Y=Float64[], I=Float64[], J=Float64[], V=Float64[] )
[push!(df,[x,y,i,j,(5*x+20*y+2)*(0.2*i^2+0.5*j^2+3*i*j+2*i^2*j+1)]) for x in X, y in Y, i in I, j in J]
minvalue = minimum(df[:V])
maxvalue = maximum(df[:V])
function toDict(df, dimCols, valueCol)
toReturn = Dict()
for r in eachrow(df)
keyValues = []
[push!(keyValues,r[d]) for d in dimCols]
toReturn[(keyValues...)] = r[valueCol]
end
return toReturn
end
dict = toDict(df, [:X,:Y,:I,:J], :V )
M = [dict[(x,y,i,j)] for j in J, i in I, y in Y, x in X ]
yL = length(Y)
xL = length(X)
plot(contour(M[:,:,3,1], ylabel="y = $(string(Y[3]))", zlims=(minvalue,maxvalue)), contour(M[:,:,3,2]), contour(M[:,:,3,3]), contour(M[:,:,3,4]),
contour(M[:,:,2,1], ylabel="y = $(string(Y[2]))", zlims=(minvalue,maxvalue)), contour(M[:,:,2,2]), contour(M[:,:,2,3]), contour(M[:,:,2,4]),
contour(M[:,:,1,1], ylabel="y = $(string(Y[1]))", xlabel="x = $(string(X[1]))"), contour(M[:,:,1,2], xlabel="x = $(string(X[2]))"), contour(M[:,:,1,3], xlabel="x = $(string(X[3]))"), contour(M[:,:,3,4], xlabel="x = $(string(X[4]))"),
layout=(yL,xL) )
This produces:
I remain however with the following concerns:
How do I automatize the creation of each subplot in the subplot call ? Do I need to write a macro ?
I would like each subplot to have the same limits in the z axis, but zlims seems not to work. Is zlims not yet supported ?
How do I hide the legend on the z axis on each subplot and plot it instead apart (best would be on the right side of the main/total plot) ?
EDIT:
For the first point I don't need a macro, I can create the subplots in a for loop, add them in a array and pass the array to the plot() call using the ellipsis operator:
plots = []
for y in length(Y):-1:1
for x in 1:length(X)
xlabel = y == 1 ? "x = $(string(X[x]))" : ""
ylabel = x==1 ? "y = $(string(Y[y]))" : ""
println("$y - $x")
plot = contour(I,J,M[:,:,y,x], xlabel=xlabel, ylabel=ylabel, zlims=(minvalue,maxvalue))
push!(plots,plot)
end
end
plot(plots..., layout=(yL,xL))

plot a line in 3D plot in julia

I'm trying to plot a line segment between the points [1,1] and [0,0] in the surface Z function x^2 + y^2,
i've already plotted f with:
using PyPlot
using Distributions
function f(x)
return (x[1]^2 + x[2]^2)
#return sin(x[1]) + cos(x[2])
end
n = 100
x = linspace(-1, 1, n)
y = linspace(-1,1,n)
xgrid = repmat(x',n,1)
ygrid = repmat(y,1,n)
z = zeros(n,n)
for i in 1:n
for j in 1:n
z[i:i,j:j] = f([x[i],y[j]])
end
end
plot_wireframe(xgrid,ygrid,z)
I know already about R (ggplot2) and C, but i'm new with python and julia librarys like matlibplot
well, I've just had to make:
using PyPlot
using Distributions
function f(x)
return (x[1]^2 + x[2]^2)
#return sin(x[1]) + cos(x[2])
end
n = 100
x = linspace(-1, 1, n)
y = linspace(-1,1,n)
xgrid = repmat(x',n,1)
ygrid = repmat(y,1,n)
z = zeros(n,n)
for i in 1:n
for j in 1:n
z[i:i,j:j] = f([x[i],y[j]])
end
end
plot_wireframe(xgrid,ygrid,z)
## new line
plot([0.0, 1.0, -1.0], [0.0, 1.0, 1.0], [0.0 , 2.0, 2.0], color="red")

Printing the equation of the best fit line

I have created the best fit lines for the dataset using the following code:
fig, ax = plt.subplots()
for dd,KK in DATASET.groupby('Z'):
fit = polyfit(x,y,3)
fit_fn = poly1d(fit)
ax.plot(KK['x'],KK['y'],'o',KK['x'], fit_fn(KK['x']),'k',linewidth=4)
ax.set_xlabel('x')
ax.set_ylabel('y')
The graph displays the best fit line for each group of Z. I want print the equation of the best fit line on top of the line.Please suggest what can i do out here
So you need to write some function that convert a poly parameters array to a latex string, here is an example:
import pylab as pl
import numpy as np
x = np.random.randn(100)
y = 1 + 2 * x + 3 * x * x + np.random.randn(100) * 2
poly = pl.polyfit(x, y, 2)
def poly2latex(poly, variable="x", width=2):
t = ["{0:0.{width}f}"]
t.append(t[-1] + " {variable}")
t.append(t[-1] + "^{1}")
def f():
for i, v in enumerate(reversed(poly)):
idx = i if i < 2 else 2
yield t[idx].format(v, i, variable=variable, width=width)
return "${}$".format("+".join(f()))
pl.plot(x, y, "o", alpha=0.4)
x2 = np.linspace(-2, 2, 100)
y2 = np.polyval(poly, x2)
pl.plot(x2, y2, lw=2, color="r")
pl.text(x2[5], y2[5], poly2latex(poly), fontsize=16)
Here is the output:
Here's a one liner.
If fit is the poly1d object, while plotting the fitted line, just use label argument as bellow,
label='y=${}$'.format(''.join(['{}x^{}'.format(('{:.2f}'.format(j) if j<0 else '+{:.2f}'.format(j)),(len(fit.coef)-i-1)) for i,j in enumerate(fit.coef)]))