Release allocated or initialized object in objective-c? - objective-c

Memory management says we must release an object created with alloc. Consider this typical example code.
XYZClass *obj = [[XYZClass alloc] init];
// use obj
[obj release];
But in this example, obj may not be the object returned from alloc, as Apple's documentation says
Note: It’s possible for init to return a different object than was created by alloc, so it’s best practice to nest the calls as shown.
So this typical example seems to release the object returned from init, breaking memory management rules, and not release the object returned from alloc, further breaking the rules.
How is this typical example valid?

First of all you code uses manual memory management, that is something I would not recommend, since Xcode 4.2 for OS X v10.6 and v10.7 (64-bit applications) and for iOS 4 and iOS we have support for Automatic Reference Counting (ARC) is a compiler feature that provides automatic memory management of Objective-C objects. See Transitioning to ARC Release Notes :
Instead of your having to remember when to use retain, release, and
autorelease, ARC evaluates the lifetime requirements of your objects
and automatically inserts appropriate memory management calls for you
at compile time. The compiler also generates appropriate dealloc
methods for you.
With regards to your specific question, the fact that init might return a different object does not break the memory management, because that different object will use the same allocation. This is quite common for class clusters that the initializer might return a internal subclass.

Related

Do I need to use autorelease on object which created not using alloc init? [duplicate]

I'm just beginning to have a look at Objective-C and Cocoa with a view to playing with the iPhone SDK. I'm reasonably comfortable with C's malloc and free concept, but Cocoa's references counting scheme has me rather confused. I'm told it's very elegant once you understand it, but I'm just not over the hump yet.
How do release, retain and autorelease work and what are the conventions about their use?
(Or failing that, what did you read which helped you get it?)
Let's start with retain and release; autorelease is really just a special case once you understand the basic concepts.
In Cocoa, each object keeps track of how many times it is being referenced (specifically, the NSObject base class implements this). By calling retain on an object, you are telling it that you want to up its reference count by one. By calling release, you tell the object you are letting go of it, and its reference count is decremented. If, after calling release, the reference count is now zero, then that object's memory is freed by the system.
The basic way this differs from malloc and free is that any given object doesn't need to worry about other parts of the system crashing because you've freed memory they were using. Assuming everyone is playing along and retaining/releasing according to the rules, when one piece of code retains and then releases the object, any other piece of code also referencing the object will be unaffected.
What can sometimes be confusing is knowing the circumstances under which you should call retain and release. My general rule of thumb is that if I want to hang on to an object for some length of time (if it's a member variable in a class, for instance), then I need to make sure the object's reference count knows about me. As described above, an object's reference count is incremented by calling retain. By convention, it is also incremented (set to 1, really) when the object is created with an "init" method. In either of these cases, it is my responsibility to call release on the object when I'm done with it. If I don't, there will be a memory leak.
Example of object creation:
NSString* s = [[NSString alloc] init]; // Ref count is 1
[s retain]; // Ref count is 2 - silly
// to do this after init
[s release]; // Ref count is back to 1
[s release]; // Ref count is 0, object is freed
Now for autorelease. Autorelease is used as a convenient (and sometimes necessary) way to tell the system to free this object up after a little while. From a plumbing perspective, when autorelease is called, the current thread's NSAutoreleasePool is alerted of the call. The NSAutoreleasePool now knows that once it gets an opportunity (after the current iteration of the event loop), it can call release on the object. From our perspective as programmers, it takes care of calling release for us, so we don't have to (and in fact, we shouldn't).
What's important to note is that (again, by convention) all object creation class methods return an autoreleased object. For example, in the following example, the variable "s" has a reference count of 1, but after the event loop completes, it will be destroyed.
NSString* s = [NSString stringWithString:#"Hello World"];
If you want to hang onto that string, you'd need to call retain explicitly, and then explicitly release it when you're done.
Consider the following (very contrived) bit of code, and you'll see a situation where autorelease is required:
- (NSString*)createHelloWorldString
{
NSString* s = [[NSString alloc] initWithString:#"Hello World"];
// Now what? We want to return s, but we've upped its reference count.
// The caller shouldn't be responsible for releasing it, since we're the
// ones that created it. If we call release, however, the reference
// count will hit zero and bad memory will be returned to the caller.
// The answer is to call autorelease before returning the string. By
// explicitly calling autorelease, we pass the responsibility for
// releasing the string on to the thread's NSAutoreleasePool, which will
// happen at some later time. The consequence is that the returned string
// will still be valid for the caller of this function.
return [s autorelease];
}
I realize all of this is a bit confusing - at some point, though, it will click. Here are a few references to get you going:
Apple's introduction to memory management.
Cocoa Programming for Mac OS X (4th Edition), by Aaron Hillegas - a very well written book with lots of great examples. It reads like a tutorial.
If you're truly diving in, you could head to Big Nerd Ranch. This is a training facility run by Aaron Hillegas - the author of the book mentioned above. I attended the Intro to Cocoa course there several years ago, and it was a great way to learn.
If you understand the process of retain/release then there are two golden rules that are "duh" obvious to established Cocoa programmers, but unfortunately are rarely spelled out this clearly for newcomers.
If a function which returns an object has alloc, create or copy in its name then the object is yours. You must call [object release] when you are finished with it. Or CFRelease(object), if it's a Core-Foundation object.
If it does NOT have one of these words in its name then the object belongs to someone else. You must call [object retain] if you wish to keep the object after the end of your function.
You would be well served to also follow this convention in functions you create yourself.
(Nitpickers: Yes, there are unfortunately a few API calls that are exceptions to these rules but they are rare).
If you're writing code for the desktop and you can target Mac OS X 10.5, you should at least look into using Objective-C garbage collection. It really will simplify most of your development — that's why Apple put all the effort into creating it in the first place, and making it perform well.
As for the memory management rules when not using GC:
If you create a new object using +alloc/+allocWithZone:, +new, -copy or -mutableCopy or if you -retain an object, you are taking ownership of it and must ensure it is sent -release.
If you receive an object in any other way, you are not the owner of it and should not ensure it is sent -release.
If you want to make sure an object is sent -release you can either send that yourself, or you can send the object -autorelease and the current autorelease pool will send it -release (once per received -autorelease) when the pool is drained.
Typically -autorelease is used as a way of ensuring that objects live for the length of the current event, but are cleaned up afterwards, as there is an autorelease pool that surrounds Cocoa's event processing. In Cocoa, it is far more common to return objects to a caller that are autoreleased than it is to return objets that the caller itself needs to release.
Objective-C uses Reference Counting, which means each Object has a reference count. When an object is created, it has a reference count of "1". Simply speaking, when an object is referred to (ie, stored somewhere), it gets "retained" which means its reference count is increased by one. When an object is no longer needed, it is "released" which means its reference count is decreased by one.
When an object's reference count is 0, the object is freed. This is basic reference counting.
For some languages, references are automatically increased and decreased, but objective-c is not one of those languages. Thus the programmer is responsible for retaining and releasing.
A typical way to write a method is:
id myVar = [someObject someMessage];
.... do something ....;
[myVar release];
return someValue;
The problem of needing to remember to release any acquired resources inside of code is both tedious and error-prone. Objective-C introduces another concept aimed at making this much easier: Autorelease Pools. Autorelease pools are special objects that are installed on each thread. They are a fairly simple class, if you look up NSAutoreleasePool.
When an object gets an "autorelease" message sent to it, the object will look for any autorelease pools sitting on the stack for this current thread. It will add the object to the list as an object to send a "release" message to at some point in the future, which is generally when the pool itself is released.
Taking the code above, you can rewrite it to be shorter and easier to read by saying:
id myVar = [[someObject someMessage] autorelease];
... do something ...;
return someValue;
Because the object is autoreleased, we no longer need to explicitly call "release" on it. This is because we know some autorelease pool will do it for us later.
Hopefully this helps. The Wikipedia article is pretty good about reference counting. More information about autorelease pools can be found here. Also note that if you are building for Mac OS X 10.5 and later, you can tell Xcode to build with garbage collection enabled, allowing you to completely ignore retain/release/autorelease.
Joshua (#6591) - The Garbage collection stuff in Mac OS X 10.5 seems pretty cool, but isn't available for the iPhone (or if you want your app to run on pre-10.5 versions of Mac OS X).
Also, if you're writing a library or something that might be reused, using the GC mode locks anyone using the code into also using the GC mode, so as I understand it, anyone trying to write widely reusable code tends to go for managing memory manually.
As ever, when people start trying to re-word the reference material they almost invariably get something wrong or provide an incomplete description.
Apple provides a complete description of Cocoa's memory management system in Memory Management Programming Guide for Cocoa, at the end of which there is a brief but accurate summary of the Memory Management Rules.
I'll not add to the specific of retain/release other than you might want to think about dropping $50 and getting the Hillegass book, but I would strongly suggest getting into using the Instruments tools very early in the development of your application (even your first one!). To do so, Run->Start with performance tools. I'd start with Leaks which is just one of many of the instruments available but will help to show you when you've forgot to release. It's quit daunting how much information you'll be presented with. But check out this tutorial to get up and going fast:
COCOA TUTORIAL: FIXING MEMORY LEAKS WITH INSTRUMENTS
Actually trying to force leaks might be a better way of, in turn, learning how to prevent them! Good luck ;)
Matt Dillard wrote:
return [[s autorelease] release];
Autorelease does not retain the object. Autorelease simply puts it in queue to be released later. You do not want to have a release statement there.
My usual collection of Cocoa memory management articles:
cocoa memory management
There's a free screencast available from the iDeveloperTV Network
Memory Management in Objective-C
NilObject's answer is a good start. Here's some supplemental info pertaining to manual memory management (required on the iPhone).
If you personally alloc/init an object, it comes with a reference count of 1. You are responsible for cleaning up after it when it's no longer needed, either by calling [foo release] or [foo autorelease]. release cleans it up right away, whereas autorelease adds the object to the autorelease pool, which will automatically release it at a later time.
autorelease is primarily for when you have a method that needs to return the object in question (so you can't manually release it, else you'll be returning a nil object) but you don't want to hold on to it, either.
If you acquire an object where you did not call alloc/init to get it -- for example:
foo = [NSString stringWithString:#"hello"];
but you want to hang on to this object, you need to call [foo retain]. Otherwise, it's possible it will get autoreleased and you'll be holding on to a nil reference (as it would in the above stringWithString example). When you no longer need it, call [foo release].
The answers above give clear restatements of what the documentation says; the problem most new people run into is the undocumented cases. For example:
Autorelease: docs say it will trigger a release "at some point in the future." WHEN?! Basically, you can count on the object being around until you exit your code back into the system event loop. The system MAY release the object any time after the current event cycle. (I think Matt said that, earlier.)
Static strings: NSString *foo = #"bar"; -- do you have to retain or release that? No. How about
-(void)getBar {
return #"bar";
}
...
NSString *foo = [self getBar]; // still no need to retain or release
The Creation Rule: If you created it, you own it, and are expected to release it.
In general, the way new Cocoa programmers get messed up is by not understanding which routines return an object with a retainCount > 0.
Here is a snippet from Very Simple Rules For Memory Management In Cocoa:
Retention Count rules
Within a given block, the use of -copy, -alloc and -retain should equal the use of -release and -autorelease.
Objects created using convenience constructors (e.g. NSString's stringWithString) are considered autoreleased.
Implement a -dealloc method to release the instancevariables you own
The 1st bullet says: if you called alloc (or new fooCopy), you need to call release on that object.
The 2nd bullet says: if you use a convenience constructor and you need the object to hang around (as with an image to be drawn later), you need to retain (and then later release) it.
The 3rd should be self-explanatory.
Lots of good information on cocoadev too:
MemoryManagement
RulesOfThumb
As several people mentioned already, Apple's Intro to Memory Management is by far the best place to start.
One useful link I haven't seen mentioned yet is Practical Memory Management. You'll find it in the middle of Apple's docs if you read through them, but it's worth direct linking. It's a brilliant executive summary of the memory management rules with examples and common mistakes (basically what other answers here are trying to explain, but not as well).

Dealloc and ARC

I read that when using ARC in Objective-C programming in Xcode the dealloc method is called automatically by the compiler. Under what circumstances is it called?
In order to avoid having too many variable names, when I need to repeatedly use the same classes to do multiple operations (and resetting the variable each time) I often declare the variables, set them to nil, and then assign values to them as I go. This ends up looking like this:
MyClass mc;
mc = [[MyClass alloc] init];
[mc doThis:someOption]
mc = [[MyClass alloc] init];
[mc doThis:someOtherOption];
//etc...
The method name alloc is short for "allocate" because it is the method where memory is allocated to the variable. Does the compiler automatically release the memory for sc every time I assign it a new value? I plan on using this method in a project of mine, and I don't want a lot of memory being allocated with all the times I call alloc to assign a new value to mc.
The compiler never calls dealloc. The compiler inserts retain, release and autorelease (more efficient equivalents, really) as necessary to follow the memory management rules.
When the compiler inserts said calls is up to the compiler and the details will change across different compiler versions and different optimization levels.
I.e. you shouldn't need to worry about it in general.
However, autorelease pressure can still be an issue, as can retain cycles. Thus, you should definitely poke about your app with the Allocations Instrument to both measure the high-water mark and make sure your app isn't leaking memory over time.
I read that when using ARC in Objective-C programming in Xcode the dealloc method is called automatically
In Objective-C, you never call -dealloc directly whether or not you're using ARC.
Under what circumstances is it called?
-dealloc is called when an object's retain count drops to zero. That is, it's called when all the objects that had previously asserted "ownership" of the object (by calling +alloc or -retain or -copy or +new) have renounced that ownership (by calling -release or -autorelease).
Does the compiler automatically release the memory for sc every time I assign it a new value?
If you're using ARC (and you should be), the compiler will insert appropriate calls to -retain, -release, etc. so that memory is managed appropriately. That said, you still need to understand how memory management works, and you should be familiar with the material in Advanced Memory Management Programming Guide.
Under ARC, your variable mc will hold a strong reference to only one instance of MyClass at a time, so when you allocate the second one and assign it to the variable, the first one should be getting deallocated, assuming your doThis: method doesn't do something that will create another strong reference to that instance, or that you're not doing anything else in your code that you've omitted that will keep a strong reference.
That being said, it would be a good idea for you to run your app with Instruments to see how much memory your app uses during this. Your instances shouldn't be getting autoreleased, so you shouldn't have to worry about them remaining around until the autorelease pool is drained, but I don't know what you might being doing when you init an instance of the class, or what you might be doing in your doThis: method, so if you're concerned, it's always a good idea to profile it with Instruments for memory allocations and leaks.

Objective-C Proper Memory Management & Clean up with ARC

Coming from the world of managed memory, wondering what would be the proper way to clean up objects when using ARC.
For example: if declaring an instance variable in C#, .NET will allow the GC to pick it up once it leaves scope (method/loop body, etc)
What's the proper way to clean-up in Objective-C? Just set the reference/pointer to nil or call dealloc or will ARC detect that no external references are pointing to the instance once execution leaves scope and do the job for you?
ARC means "Automatic Reference Counting" and is just a way to let the compiler add the calls to retain/release/autorelease for you. It's not the same as GC but in most cases, you can consider that objects lifetime is automatically managed for you, like in GC.
If you want more information, you should read LLVM document on ARC
Last note: never call dealloc yourself. dealloc is the object's finalizer which is called once the ObjC runtime determines that the object reference count has reached 0. This method is only meant to be overriden by subclasses. In ARC mode, you generally don't need to do that, except if your object references non-object ivars that need to be finalized once the object itself is finalized.
will ARC detect that no external references are pointing to the
instance once execution leaves scope and do the job for you
Basically, yes, that's exactly what ARC will do. You don't need to clean up objects when you're using ARC; in fact, you can't (it stops you from trying to perform manual memory management).
You might want to consult the relevant discussion in my book:
http://www.apeth.com/iOSBook/ch12.html#_memory_management
It explains what's really happening behind the scenes (how memory is actually managed) and then goes on to describe how ARC shields you from most of it.
Note that (as I explain in the URL referenced above) it mostly isn't done by anything like garbage collection: it's done by inserting invisible explicit memory management throughout your code.
Well, in the past, iOS programmers were responsible for telling the system when they were done using an object that they allocated by sending the object a release message. That was done in accordance with a memory management system known as manual reference counting. As of Xcode 4.2, programmers no longer have to worry about this and can rely on the system to take care of releasing memory as necessary. This is done through a mechanism known as Automatic Reference Counting, or ARC for short. ARC is enabled by default when you compile new applications using Xcode 4.2 or later.
You can also disable ARC, in your Xcode interface, go to your main project (not main.h) your actual Xcode project, and select it, you should see a window in Xcode that displays the settings for your project, there will be one that says 'Objective-C Automatic Reference Counting' and it will be set to 'Yes', deactivate it (to 'No') and you shouldn't worry about the ARC, if you come from the world of data management and memory as you said, but keep in mind that it would be easier to you to keep updated to the iOS new features system, that are easier to the programmer to program, it just makes our life easier.
And now, the 'proper way to clean-up in Xcode' with ARC is with 'alloc' and 'init'.
With ARC in Xcode you do not need to worry for 'cleaning' that's the job of Xcode now, you just need to:
1) Create a variable.
2) Allocate.
3) Initialize.
That's it.
An example here:
int main (int argc, char * argv[])
{
#autoreleasepool {
Variable *myVariable;
// Create an instance of a Variable and initialize it
myVariable = [Variable alloc];
myVariable = [myVariable init];
// Set variable to 4/20
[myVariable setNumerator: 4];
[myVariable setDenominator: 20];
// Display the variable using the print method
NSLog (#"The value of myVariable is:");
[myVariable print];
}
return 0;
}
Just allocate and then initialize, yo do not need to do any thing else.
Keep in mind getters and setters.

Core Foundation objects and retain/release messages

Let's say we have some Core Foundation objects, such as CGColorRef, that are added to an NSArray like this:
CGColorRef color = ...;
NSArray *array = [NSArray arrayWithObject:(id)color];
Since arrays retain their contents, color receives a retain message (not CFRetain(), right?). What happens in this case from memory management point of view?
From Core Foundation Design Concepts:
Note from the example that the memory management functions and methods are also interchangeable—you can use CFRelease with a Cocoa object and release and autorelease with a Core Foundation object.
It doesn't specifically mention retain, but, in practice, that works as well, as do copy (various classes' CFFooCreateCopy) and description (CFCopyDescription). The last is how you can pass CF objects as the value for a %# formatting specification when using NSLog and other string-formatting functions and methods.
The result is the same: retain does the same as CFRetain, release does the same as CFRelease, etc.
A few things to be aware of:
Prior to iOS 7 and OS X 10.9, there is no CF counterpart function to NSObject's autorelease method. (7 and 10.9 brought the CFAutorelease function.) If you're not using ARC, then, as mentioned in the documentation quoted above, you can send autorelease to a CF object, and it works the same as on an NSObject.
You can send a message to nil, but you can't call CF functions on NULL (you'll crash). Quartz has some class-specific functions, such as CGContextRetain/Release, that include a NULL check; whether you want to use those or always do your own NULL checks is a matter of style.
CF's retain and release functions work under garbage collection, whereas retain and release messages are no-ops (as if sent to nil). Doesn't matter unless you're working on a GC'd Mac app, in which case you will need to use CFRetain and CFRelease on CF objects.
Similarly, under ARC, retain and release messages will be illegal and CF objects won't be automatically reference-counted. You will need to use CFRetain and CFRelease on CF objects.
Collections always do the right thing, as documented. Usually, this means a strong reference. Outside of GC, that means the collection (array, dictionary, etc.) will retain and release its objects, whether automatically (by assignments, if its code is ARCified) or manually (by explicit retain and release messages).

Releasing Core Foundation object references

Do I need to release a Core Foundation objects to clear up memory? And if so, how?
For example, in the code:
ABAddressBookRef addressBook = ABAddressBookCreate();
CFArrayRef peopleArray = ABAddressBookCopyArrayOfAllPeople(addressBook);
do I need to release peopleArray? What about addressBook?
Yes, in CoreFoundation you have to release anything with Create or Copy in the name. You do this with CFRelease(). In your case, you should be releasing both the array and the address book references.
The rules for memory management in Core Foundation are similar to those in Cocoa: if the method that returns a reference contains the words "create" or "copy", you own the reference and must call CFRelease() on that reference to relinquish ownership. Otherwise, you do not own the reference and must call CFRetain to take ownership (necessarily requiring a subsequent CFRelease to relinquish that new ownership). These rules, as taken from the Memory Management Programming Guide for Core Foundation are:
If you create an object (either
directly or by making a copy of
another object—see “The Create
Rule”), you own it.
If you get an
object from somewhere else, you do
not own it. If you want to prevent it
being disposed of, you must add
yourself as an owner (using
CFRetain).
If you are an owner of an
object, you must relinquish ownership
when you have finished using it
(using CFRelease).
In your example, both the addressBook and the peopleArray must be released. Since there is no autorelease equivalent in Core Foundation, if you are returning the a reference from a method, return the array without releasing it. You should (unless you're being evil) then include "create" in the method name to indicate to the caller that they now own a reference to the returned object. In this case, CFArray is toll-free bridged to NSCFArray, an Objective-C object that inherits from NSObject. You can thus cast peopleArray to an NSArray* and autorelease that, if you need to return it from a function/method:
return [(NSArray*)peopleArray autorelease];
Note that this only works for toll-free bridged classes. My understanding is that it's rather difficult to make your own toll-free bridged classes and only the primitive (string, array, etc.) CF classes are toll-free bridged, so this approach won't work always. Finally, if you can avoid using autorelease (i.e. you can make your memory management more explicit), that's probably always a good thing.
Another small point that no-one has mentioned yet, some CF classes have a "toll-free bridge" with their NS counterpart. CFString and NSString, CFArray and NSArray are both examples. This is relevant as you can just use release with these classes.
See this other StackOverflow question for more information.
I would suggest reading Apple's guide on Core Foundation memory management for an in-depth discussion of this. They have a similar guide for general Cocoa memory management as well.
To release a CF object, you would call the CFRelease function.
For ARC you can use.
return (__bridge_transfer NSArray*)peopleArray;
"__bridge_transfer" will transfer the ownership to ARC and therefore you don't need any further release call.