I've spent entirely too long researching how to get two subplots to share the same y-axis with a single colorbar shared between the two in Matplotlib.
What was happening was that when I called the colorbar() function in either subplot1 or subplot2, it would autoscale the plot such that the colorbar plus the plot would fit inside the 'subplot' bounding box, causing the two side-by-side plots to be two very different sizes.
To get around this, I tried to create a third subplot which I then hacked to render no plot with just a colorbar present.
The only problem is, now the heights and widths of the two plots are uneven, and I can't figure out how to make it look okay.
Here is my code:
from __future__ import division
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import patches
from matplotlib.ticker import NullFormatter
# SIS Functions
TE = 1 # Einstein radius
g1 = lambda x,y: (TE/2) * (y**2-x**2)/((x**2+y**2)**(3/2))
g2 = lambda x,y: -1*TE*x*y / ((x**2+y**2)**(3/2))
kappa = lambda x,y: TE / (2*np.sqrt(x**2+y**2))
coords = np.linspace(-2,2,400)
X,Y = np.meshgrid(coords,coords)
g1out = g1(X,Y)
g2out = g2(X,Y)
kappaout = kappa(X,Y)
for i in range(len(coords)):
for j in range(len(coords)):
if np.sqrt(coords[i]**2+coords[j]**2) <= TE:
g1out[i][j]=0
g2out[i][j]=0
fig = plt.figure()
fig.subplots_adjust(wspace=0,hspace=0)
# subplot number 1
ax1 = fig.add_subplot(1,2,1,aspect='equal',xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{1}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
plt.ylabel(r"y ($\theta_{E}$)",rotation='horizontal',fontsize="15")
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.xticks([-2.0,-1.5,-1.0,-0.5,0,0.5,1.0,1.5])
plt.imshow(g1out,extent=(-2,2,-2,2))
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
e1 = patches.Ellipse((0,0),2,2,color='white')
ax1.add_patch(e1)
# subplot number 2
ax2 = fig.add_subplot(1,2,2,sharey=ax1,xlim=[-2,2],ylim=[-2,2])
plt.title(r"$\gamma_{2}$",fontsize="18")
plt.xlabel(r"x ($\theta_{E}$)",fontsize="15")
ax2.yaxis.set_major_formatter( NullFormatter() )
plt.axhline(y=0,linewidth=2,color='k',linestyle="--")
plt.axvline(x=0,linewidth=2,color='k',linestyle="--")
plt.imshow(g2out,extent=(-2,2,-2,2))
e2 = patches.Ellipse((0,0),2,2,color='white')
ax2.add_patch(e2)
# subplot for colorbar
ax3 = fig.add_subplot(1,1,1)
ax3.axis('off')
cbar = plt.colorbar(ax=ax2)
plt.show()
Just place the colorbar in its own axis and use subplots_adjust to make room for it.
As a quick example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])
fig.colorbar(im, cax=cbar_ax)
plt.show()
Note that the color range will be set by the last image plotted (that gave rise to im) even if the range of values is set by vmin and vmax. If another plot has, for example, a higher max value, points with higher values than the max of im will show in uniform color.
You can simplify Joe Kington's code using the axparameter of figure.colorbar() with a list of axes.
From the documentation:
ax
None | parent axes object(s) from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
This solution does not require manual tweaking of axes locations or colorbar size, works with multi-row and single-row layouts, and works with tight_layout(). It is adapted from a gallery example, using ImageGrid from matplotlib's AxesGrid Toolbox.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
# Set up figure and image grid
fig = plt.figure(figsize=(9.75, 3))
grid = ImageGrid(fig, 111, # as in plt.subplot(111)
nrows_ncols=(1,3),
axes_pad=0.15,
share_all=True,
cbar_location="right",
cbar_mode="single",
cbar_size="7%",
cbar_pad=0.15,
)
# Add data to image grid
for ax in grid:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
# Colorbar
ax.cax.colorbar(im)
ax.cax.toggle_label(True)
#plt.tight_layout() # Works, but may still require rect paramater to keep colorbar labels visible
plt.show()
Using make_axes is even easier and gives a better result. It also provides possibilities to customise the positioning of the colorbar.
Also note the option of subplots to share x and y axes.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
cax,kw = mpl.colorbar.make_axes([ax for ax in axes.flat])
plt.colorbar(im, cax=cax, **kw)
plt.show()
As a beginner who stumbled across this thread, I'd like to add a python-for-dummies adaptation of abevieiramota's very neat answer (because I'm at the level that I had to look up 'ravel' to work out what their code was doing):
import numpy as np
import matplotlib.pyplot as plt
fig, ((ax1,ax2,ax3),(ax4,ax5,ax6)) = plt.subplots(2,3)
axlist = [ax1,ax2,ax3,ax4,ax5,ax6]
first = ax1.imshow(np.random.random((10,10)), vmin=0, vmax=1)
third = ax3.imshow(np.random.random((12,12)), vmin=0, vmax=1)
fig.colorbar(first, ax=axlist)
plt.show()
Much less pythonic, much easier for noobs like me to see what's actually happening here.
Shared colormap and colorbar
This is for the more complex case where the values are not just between 0 and 1; the cmap needs to be shared instead of just using the last one.
import numpy as np
from matplotlib.colors import Normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig, axes = plt.subplots(nrows=2, ncols=2)
cmap=cm.get_cmap('viridis')
normalizer=Normalize(0,4)
im=cm.ScalarMappable(norm=normalizer)
for i,ax in enumerate(axes.flat):
ax.imshow(i+np.random.random((10,10)),cmap=cmap,norm=normalizer)
ax.set_title(str(i))
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
As pointed out in other answers, the idea is usually to define an axes for the colorbar to reside in. There are various ways of doing so; one that hasn't been mentionned yet would be to directly specify the colorbar axes at subplot creation with plt.subplots(). The advantage is that the axes position does not need to be manually set and in all cases with automatic aspect the colorbar will be exactly the same height as the subplots. Even in many cases where images are used the result will be satisfying as shown below.
When using plt.subplots(), the use of gridspec_kw argument allows to make the colorbar axes much smaller than the other axes.
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
Example:
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(5.5,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,8), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,8), vmin=0, vmax=1)
ax.set_ylabel("y label")
fig.colorbar(im, cax=cax)
plt.show()
This works well, if the plots' aspect is autoscaled or the images are shrunk due to their aspect in the width direction (as in the above). If, however, the images are wider then high, the result would look as follows, which might be undesired.
A solution to fix the colorbar height to the subplot height would be to use mpl_toolkits.axes_grid1.inset_locator.InsetPosition to set the colorbar axes relative to the image subplot axes.
import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)
from mpl_toolkits.axes_grid1.inset_locator import InsetPosition
fig, (ax, ax2, cax) = plt.subplots(ncols=3,figsize=(7,3),
gridspec_kw={"width_ratios":[1,1, 0.05]})
fig.subplots_adjust(wspace=0.3)
im = ax.imshow(np.random.rand(11,16), vmin=0, vmax=1)
im2 = ax2.imshow(np.random.rand(11,16), vmin=0, vmax=1)
ax.set_ylabel("y label")
ip = InsetPosition(ax2, [1.05,0,0.05,1])
cax.set_axes_locator(ip)
fig.colorbar(im, cax=cax, ax=[ax,ax2])
plt.show()
New in matplotlib 3.4.0
Shared colorbars can now be implemented using subfigures:
New Figure.subfigures and Figure.add_subfigure allow ... localized figure artists (e.g., colorbars and suptitles) that only pertain to each subfigure.
The matplotlib gallery includes demos on how to plot subfigures.
Here is a minimal example with 2 subfigures, each with a shared colorbar:
fig = plt.figure(constrained_layout=True)
(subfig_l, subfig_r) = fig.subfigures(nrows=1, ncols=2)
axes_l = subfig_l.subplots(nrows=1, ncols=2, sharey=True)
for ax in axes_l:
im = ax.imshow(np.random.random((10, 10)), vmin=0, vmax=1)
# shared colorbar for left subfigure
subfig_l.colorbar(im, ax=axes_l, location='bottom')
axes_r = subfig_r.subplots(nrows=3, ncols=1, sharex=True)
for ax in axes_r:
mesh = ax.pcolormesh(np.random.randn(30, 30), vmin=-2.5, vmax=2.5)
# shared colorbar for right subfigure
subfig_r.colorbar(mesh, ax=axes_r)
The solution of using a list of axes by abevieiramota works very well until you use only one row of images, as pointed out in the comments. Using a reasonable aspect ratio for figsize helps, but is still far from perfect. For example:
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9.75, 3))
for ax in axes.flat:
im = ax.imshow(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.ravel().tolist())
plt.show()
The colorbar function provides the shrink parameter which is a scaling factor for the size of the colorbar axes. It does require some manual trial and error. For example:
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.75)
To add to #abevieiramota's excellent answer, you can get the euqivalent of tight_layout with constrained_layout. You will still get large horizontal gaps if you use imshow instead of pcolormesh because of the 1:1 aspect ratio imposed by imshow.
import numpy as np
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2, constrained_layout=True)
for ax in axes.flat:
im = ax.pcolormesh(np.random.random((10,10)), vmin=0, vmax=1)
fig.colorbar(im, ax=axes.flat)
plt.show()
I noticed that almost every solution posted involved ax.imshow(im, ...) and did not normalize the colors displayed to the colorbar for the multiple subfigures. The im mappable is taken from the last instance, but what if the values of the multiple im-s are different? (I'm assuming these mappables are treated in the same way that the contour-sets and surface-sets are treated.) I have an example using a 3d surface plot below that creates two colorbars for a 2x2 subplot (one colorbar per one row). Although the question asks explicitly for a different arrangement, I think the example helps clarify some things. I haven't found a way to do this using plt.subplots(...) yet because of the 3D axes unfortunately.
If only I could position the colorbars in a better way... (There is probably a much better way to do this, but at least it should be not too difficult to follow.)
import matplotlib
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
cmap = 'plasma'
ncontours = 5
def get_data(row, col):
""" get X, Y, Z, and plot number of subplot
Z > 0 for top row, Z < 0 for bottom row """
if row == 0:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 1
else:
pnum = 2
elif row == 1:
x = np.linspace(1, 10, 10, dtype=int)
X, Y = np.meshgrid(x, x)
Z = -np.sqrt(X**2 + Y**2)
if col == 0:
pnum = 3
else:
pnum = 4
print("\nPNUM: {}, Zmin = {}, Zmax = {}\n".format(pnum, np.min(Z), np.max(Z)))
return X, Y, Z, pnum
fig = plt.figure()
nrows, ncols = 2, 2
zz = []
axes = []
for row in range(nrows):
for col in range(ncols):
X, Y, Z, pnum = get_data(row, col)
ax = fig.add_subplot(nrows, ncols, pnum, projection='3d')
ax.set_title('row = {}, col = {}'.format(row, col))
fhandle = ax.plot_surface(X, Y, Z, cmap=cmap)
zz.append(Z)
axes.append(ax)
## get full range of Z data as flat list for top and bottom rows
zz_top = zz[0].reshape(-1).tolist() + zz[1].reshape(-1).tolist()
zz_btm = zz[2].reshape(-1).tolist() + zz[3].reshape(-1).tolist()
## get top and bottom axes
ax_top = [axes[0], axes[1]]
ax_btm = [axes[2], axes[3]]
## normalize colors to minimum and maximum values of dataset
norm_top = matplotlib.colors.Normalize(vmin=min(zz_top), vmax=max(zz_top))
norm_btm = matplotlib.colors.Normalize(vmin=min(zz_btm), vmax=max(zz_btm))
cmap = cm.get_cmap(cmap, ncontours) # number of colors on colorbar
mtop = cm.ScalarMappable(cmap=cmap, norm=norm_top)
mbtm = cm.ScalarMappable(cmap=cmap, norm=norm_btm)
for m in (mtop, mbtm):
m.set_array([])
# ## create cax to draw colorbar in
# cax_top = fig.add_axes([0.9, 0.55, 0.05, 0.4])
# cax_btm = fig.add_axes([0.9, 0.05, 0.05, 0.4])
cbar_top = fig.colorbar(mtop, ax=ax_top, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_top)
cbar_top.set_ticks(np.linspace(min(zz_top), max(zz_top), ncontours))
cbar_btm = fig.colorbar(mbtm, ax=ax_btm, orientation='vertical', shrink=0.75, pad=0.2) #, cax=cax_btm)
cbar_btm.set_ticks(np.linspace(min(zz_btm), max(zz_btm), ncontours))
plt.show()
plt.close(fig)
## orientation of colorbar = 'horizontal' if done by column
This topic is well covered but I still would like to propose another approach in a slightly different philosophy.
It is a bit more complex to set-up but it allow (in my opinion) a bit more flexibility. For example, one can play with the respective ratios of each subplots / colorbar:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.gridspec import GridSpec
# Define number of rows and columns you want in your figure
nrow = 2
ncol = 3
# Make a new figure
fig = plt.figure(constrained_layout=True)
# Design your figure properties
widths = [3,4,5,1]
gs = GridSpec(nrow, ncol + 1, figure=fig, width_ratios=widths)
# Fill your figure with desired plots
axes = []
for i in range(nrow):
for j in range(ncol):
axes.append(fig.add_subplot(gs[i, j]))
im = axes[-1].pcolormesh(np.random.random((10,10)))
# Shared colorbar
axes.append(fig.add_subplot(gs[:, ncol]))
fig.colorbar(im, cax=axes[-1])
plt.show()
The answers above are great, but most of them use the fig.colobar() method applied to a fig object. This example shows how to use the plt.colobar() function, applied directly to pyplot:
def shared_colorbar_example():
fig, axs = plt.subplots(nrows=3, ncols=3)
for ax in axs.flat:
plt.sca(ax)
color = np.random.random((10))
plt.scatter(range(10), range(10), c=color, cmap='viridis', vmin=0, vmax=1)
plt.colorbar(ax=axs.ravel().tolist(), shrink=0.6)
plt.show()
shared_colorbar_example()
Since most answers above demonstrated usage on 2D matrices, I went with a simple scatter plot. The shrink keyword is optional and resizes the colorbar.
If vmin and vmax are not specified this approach will automatically analyze all of the subplots for the minimum and maximum value to be used on the colorbar. The above approaches when using fig.colorbar(im) scan only the image passed as argument for min and max values of the colorbar.
Result:
I'd like to draw a (vertical) colorbar, which has two different scales (corresponding to two different units for the same quantity) on each side. Think Fahrenheit on one side and Celsius on the other side. Obviously, I'd need to specify the ticks for each side individually.
Any idea how I can do this?
That should get you started:
import matplotlib.pyplot as plt
import numpy as np
# generate random data
x = np.random.randint(0,200,(10,10))
plt.pcolormesh(x)
# create the colorbar
# the aspect of the colorbar is set to 'equal', we have to set it to 'auto',
# otherwise twinx() will do weird stuff.
cbar = plt.colorbar()
pos = cbar.ax.get_position()
cbar.ax.set_aspect('auto')
# create a second axes instance and set the limits you need
ax2 = cbar.ax.twinx()
ax2.set_ylim([-2,1])
# resize the colorbar (otherwise it overlays the plot)
pos.x0 +=0.05
cbar.ax.set_position(pos)
ax2.set_position(pos)
plt.show()
If you create a subplot for the colorbar, you can create a twin axes for that subplot and manipulate it like a normal axes.
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(-1,2.7)
X,Y = np.meshgrid(x,x)
Z = np.exp(-X**2-Y**2)*.9+0.1
fig, (ax, cax) = plt.subplots(ncols=2, gridspec_kw={"width_ratios":[15,1]})
im =ax.imshow(Z, vmin=0.1, vmax=1)
cbar = plt.colorbar(im, cax=cax)
cax2 = cax.twinx()
ticks=np.arange(0.1,1.1,0.1)
iticks=1./np.array([10,3,2,1.5,1])
cbar.set_ticks(ticks)
cbar.set_label("z")
cbar.ax.yaxis.set_label_position("left")
cax2.set_ylim(0.1,1)
cax2.set_yticks(iticks)
cax2.set_yticklabels(1./iticks)
cax2.set_ylabel("1/z")
plt.show()
Note that in newer version of matplotlib, the above answers no long work (as #Ryan Skene pointed out). I'm using v3.3.2. The secondary_yaxis function works for the colorbars in the same way as for regular plot axes and gives one colorbar with two scales: https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.secondary_yaxis.html#matplotlib.axes.Axes.secondary_yaxis
import matplotlib.pyplot as plt
import numpy as np
# generate random data
x = np.random.randint(0,200,(10,10)) #let's assume these are temperatures in Fahrenheit
im = plt.imshow(x)
# create the colorbar
cbar = plt.colorbar(im,pad=0.1) #you may need to adjust this padding for the secondary colorbar label[enter image description here][1]
cbar.set_label('Temperature ($^\circ$F)')
# define functions that relate the two colorbar scales
# e.g., Celcius to Fahrenheit and vice versa
def F_to_C(x):
return (x-32)*5/9
def C_to_F(x):
return (x*9/5)+32
# create a second axes
cbar2 = cbar.ax.secondary_yaxis('left',functions=(F_to_C,C_to_F))
cbar2.set_ylabel('Temperatrue ($\circ$C)')
plt.show()
I am using an inset axis for my colorbar and, for some reason, I found the above to answers no longer worked as of v3.4.2. The twinx took up the entire original subplot.
So I just replicated the inset axis (instead of using twinx) and increased the zorder on the original inset.
axkws = dict(zorder=2)
cax = inset_axes(
ax, width="100%", height="100%", bbox_to_anchor=bbox,
bbox_transform=ax.transAxes, axes_kwargs=axkws
)
cbar = self.fig.colorbar(mpl.cm.ScalarMappable(cmap=cmap), cax=cax)
cbar.ax.yaxis.set_ticks_position('left')
caxx = inset_axes(
ax, width="100%", height="100%",
bbox_to_anchor=bbox, bbox_transform=ax.transAxes
)
caxx.yaxis.set_ticks_position('right')
I am quite used to working with matlab and now trying to make the shift matplotlib and numpy. Is there a way in matplotlib that an image you are plotting occupies the whole figure window.
import numpy as np
import matplotlib.pyplot as plt
# get image im as nparray
# ........
plt.figure()
plt.imshow(im)
plt.set_cmap('hot')
plt.savefig("frame.png")
I want the image to maintain its aspect ratio and scale to the size of the figure ... so when I do savefig it exactly the same size as the input figure, and it is completely covered by the image.
Thanks.
I did this using the following snippet.
#!/usr/bin/env python
import numpy as np
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
from pylab import *
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = Z2-Z1 # difference of Gaussians
ax = Axes(plt.gcf(),[0,0,1,1],yticks=[],xticks=[],frame_on=False)
plt.gcf().delaxes(plt.gca())
plt.gcf().add_axes(ax)
im = plt.imshow(Z, cmap=cm.gray)
plt.show()
Note the grey border on the sides is related to the aspect rario of the Axes which is altered by setting aspect='equal', or aspect='auto' or your ratio.
Also as mentioned by Zhenya in the comments Similar StackOverflow Question
mentions the parameters to savefig of bbox_inches='tight' and pad_inches=-1 or pad_inches=0
You can use a function like the one below.
It calculates the needed size for the figure (in inches) according to the resolution in dpi you want.
import numpy as np
import matplotlib.pyplot as plt
def plot_im(image, dpi=80):
px,py = im.shape # depending of your matplotlib.rc you may
have to use py,px instead
#px,py = im[:,:,0].shape # if image has a (x,y,z) shape
size = (py/np.float(dpi), px/np.float(dpi)) # note the np.float()
fig = plt.figure(figsize=size, dpi=dpi)
ax = fig.add_axes([0, 0, 1, 1])
# Customize the axis
# remove top and right spines
ax.spines['right'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
# turn off ticks
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.imshow(im)
plt.show()
Here's a minimal object-oriented solution:
fig = plt.figure(figsize=(8, 8))
ax = fig.add_axes([0, 0, 1, 1], frameon=False, xticks=[], yticks=[])
Testing it out with
ax.imshow([[0]])
fig.savefig('test.png')
saves out a uniform purple block.
edit: As #duhaime points out below, this requires the figure to have the same aspect as the axes.
If you'd like the axes to resize to the figure, add aspect='auto' to imshow.
If you'd like the figure to resize to be resized to the axes, add
from matplotlib import tight_bbox
bbox = fig.get_tightbbox(fig.canvas.get_renderer())
tight_bbox.adjust_bbox(fig, bbox, fig.canvas.fixed_dpi)
after the imshow call. This is the important bit of matplotlib's tight_layout functionality which is implicitly called by things like Jupyter's renderer.
In R, there is a function locator which is like Matlab's ginput where you can click on the figure with a mouse and select any x,y coordinate. In addition, there is a function called identify(x,y) where if you give it a set of points x,y that you have plotted and then click on the figure, it will return the index of the x,y point which lies nearest (within an adjustable tolerance) to the location you have selected (or multiple indices, if multiple points are selected). Is there such a functionality in Matplotlib?
You may want to use a pick event :
fig = figure()
ax1 = fig.add_subplot(111)
ax1.set_title('custom picker for line data')
line, = ax1.plot(rand(100), rand(100), 'o', picker=line_picker)
fig.canvas.mpl_connect('pick_event', onpick2)
Tolerance set by picker parameter there:
line, = ax1.plot(rand(100), 'o', picker=5) # 5 points tolerance
from __future__ import print_function
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from matplotlib.patches import Rectangle
from matplotlib.text import Text
from matplotlib.image import AxesImage
import numpy as np
from numpy.random import rand
if 1:
fig, ax = plt.subplots()
ax.set_title('click on points', picker=True)
ax.set_ylabel('ylabel', picker=True, bbox=dict(facecolor='red'))
line, = ax.plot(rand(100), 'o', picker=5)
def onpick1(event):
if isinstance(event.artist, Line2D):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print 'X='+str(np.take(xdata, ind)[0]) # Print X point
print 'Y='+str(np.take(ydata, ind)[0]) # Print Y point
fig.canvas.mpl_connect('pick_event', onpick1)
Wow many years have passed! Now matplotlib also support the ginput function which has almost the same API as Matlab. So there is no need to hack by the mpl-connect and so on any more! (https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.ginput.html) For instance,
plt.ginput(4)
will let the user to select 4 points.
The ginput() is a handy tool to select x, y coordinates of any random point from a plotted window, however that point may not belong to the plotted data. To select x, y coordinates of a point from the plotted data, an efficient tool still is to use 'pick_event' property with mpl_connect as the example given in the documentation. For example:
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import rand
fig, ax = plt.subplots()
ax.plot(rand(100), rand(100), picker=3)
# 3, for example, is tolerance for picker i.e, how far a mouse click from
# the plotted point can be registered to select nearby data point/points.
def on_pick(event):
global points
line = event.artist
xdata, ydata = line.get_data()
print('selected point is:',np.array([xdata[ind], ydata[ind]]).T)
cid = fig.canvas.mpl_connect('pick_event', on_pick)
The last line above will connect the plot with the 'pick_event' and the corrdinates of the nearest plot points will keep printing after each mouse click on plot, to end this process, we need to use mpl_disconnect as:
fig.canvas.mpl_disconnect(cid)