How can I write a constraint that indicates that my variable can only take values that are multiples of 35?
using JuMP, Gurobi
m = Model(Gurobi.Optimizer)
#variable(m, x>=0, Int)
y = 35x
Now you can use y as any other variable in your optimization model.
If you want to have such constraint on the value of the objective (as the link that points to the deleted question) you could do (I reuse x from the previous example):
#variable(m,z1)
#variable(m,z2)
ob = 3z1 + 2z2
#constraint(m, ob == 35x)
#objective(m, Max, ob)
Related
I have curve that initially Y increases linearly with X, then reach a plateau at point C.
In other words, the curve can be defined as:
if X < C:
Y = k * X + b
else:
Y = k * C + b
The training data is a list of X ~ Y values. I need to determine k, b and C through a machine learning approach (or similar), since the data is noisy and refection point C changes over time. I want something more robust than get C through observing the current sample data.
How can I do it using sklearn or maybe scipy?
WLOG you can say the second equation is
Y = C
looks like you have a linear regression to fit the line and then a detection point to find the constant.
You know that in the high values of X, as in X > C you are already at the constant. So just check how far back down the values of X you get the same constant.
Then do a linear regression to find the line with value of X, X <= C
Your model is nonlinear
I think the smartest way to solve this is to do these steps:
find the maximum value of Y which is equal to k*C+b
M=max(Y)
drop this maximum value from your dataset
df1 = df[df.Y != M]
and then you have simple dataset to fit your X to Y and you can use sklearn for that
I'm trying to solve a model using Julia-JuMP. The following is the outline of the model that I created. Here, z[i,j] is a binary variable and d[i,j] is the cost for which z[i,j]=1.
My constraint creates an infinite number of constraint and hence I need to use a separation algorithm to solve it.
First, I solve the model without any constraint, so the answer to all variables z[i,j] and d[i,j] are zero.
Then, I'm including the separation algorithm (which is given inside the if condition). Even though I'm including if z_value == 0, z_values are not passing to it.
Am I missing something in the format of this model?
m = Model(solver=GurobiSolver())
#variable(m, z[N,N], Bin)
#variable(m, d[N,N]>=0)
#objective(m, Min, sum{ d[i,j]*z[i,j], i in N, j in N} )
z_value = getvalue(z)
d_value = getvalue(d)
if z_value == 0
statement
elseif z_value == 1
statement
end
#constraint(m, sum{z[i,j], i in N, j in N}>=2)
solve(m)
println("Final solution: [ $(getvalue(z)), $(getvalue(d)) ]")
You're multiplying z by d which both are variables, hence your model is non-linear,
Are the costs d[i,j] constant or really a variable of the problem ?
If so you need to use a non-linear solver
I have an array of set in the Golfers problem (in each week there should be formed groups, such that no two players play together more than once, and everybody plays exactly one time each week):
int: gr; %number of groups
set of int: G=1..gr;
int: sz; %size of groups
set of int: S=1..sz;
int: n=gr*sz; %number of players
set of int: P=1..n;
int: we; % number of weeks
set of int: W=1..we;
include "globals.mzn";
array[G,W] of var set of P: X; %X[g,w] is the set of people that form group g in week w
My constraints are as follow (I'm not sure if everything works correctly yet):
constraint forall (g in G, w in W) (card (X[g,w]) = sz); %Each group should have size sz
constraint forall (w in W, g,h in G where g > h) (disjoint(X[g,w], X[h,w])); % Nobody plays twice in one week
constraint forall (w,u in W where w > u) (forall (g,h in G) (card(X[g,w] intersect X[h,u]) <= 1 )); % Two players never meet more than once
constraint forall (w in 2..we) (w+sz-1 in X[1,w] /\ 1 in X[1,w]); %Symmetries breaking: week permutations
constraint forall (w in W, g in 1..gr-1) ( min(X[g,w]) < min(X[g+1,w]) ); %Symmetries breaking: group permutations
constraint forall (g in G, s in S) ( s+sz*(g-1) in X[g,1]);
solve satisfy;
output [ show(X[i,j]) ++ if j == we then "\n" else " " endif | i in 1..gr, j in 1..we ];
My problem lies in constraint number 5. I cannot use min on "var set of int: x", I should use it on "set of int: x". Unfortunately, I do not understand the difference between those two (from what I've read this may be connected to defining the size of each set, but I'm not sure).
Could someone explain the problem to me and propose a solution? I would be very very grateful. Thanks!
First of all: A var is a decision variable. The goal of all Minizinc programs are to decide the the value of all decision variables. You don't know what the values are and you are trying to find the values. Anything that is not a var is simply a known number. (disregarding the use of sets)
Doing min(X[g,w]) of a decision variable (var) is simply not implemented in Minizinc. The reason would be that using X[g,w] < X[g+1,w] without the min makes more sense. Why only constrain the lowest number in both sets insted of all numbers. I.e {1,3,5} < {1,4} insted of 1 < 1
(I hope MiniZinc has < on sets so I don't lie, I am not sure)
I have found out the solution - we should make an array of elements of the set to make the max function possible in this case.
constraint forall (w in 2..we) ( max([i | i in X[1,w-1]]) < max([i | i in X[1,w]])); %Symmetries breaking: week permutations
constraint forall (w in W, g in 1..gr-1) ( min([i | i in X[g,w]]) < min([i | i in X[g+1,w]]));% Symmetries breaking: group permutations (I have been trying to speed up the constraint above, but it does not work with var set of int..)
I'm trying to model the next constraint in Minizinc:
Suppose S is an array of decision variables of size n. I want my decision variables to take a value between 1-k, but there is a maximum 'Cons_Max' on the number of consecutive values used.
For example, suppose Cons_Max = 2, n = 8 and k = 15, then the sequence [1,2,4,5,7,8,10,11] is a valid sequence , while e.g. [1,2,3,5,6,8,9,11] is not a valid sequence because the max number of consecutive values is equal to 3 here (1,2,3).
Important to mention is that sequence [1,3,5,7,9,10,12,14] is also valid, because the values don't need to be consecutive but the max number of consectuive values is fixed to 'Cons_Max'.
Any recommendations on how to model this in Minizinc?
Here's a model with a approach that seems to work. I also added the two constraints all_different and increasing since they are probably assumed in the problem.
include "globals.mzn";
int: n = 8;
int: k = 15;
int: Cons_Max = 2;
% decision variables
array[1..n] of var 1..k: x;
constraint
forall(i in 1..n-Cons_Max) (
x[i+Cons_Max]-x[i] > Cons_Max
)
;
constraint
increasing(x) /\
all_different(x)
;
%% test cases
% constraint
% % x = [1,2,4,5,7,8,10,11] % valid solution
% % x = [1,3,5,7,9,10,12,14] % valid valid solution
% % x = [1,2,3,5,6,8,9,11] % -> not valid solution (-> UNSAT)
% ;
solve satisfy;
output ["x: \(x)\n" ];
Suppose you use array x to represent your decision variable.
array[1..n] of var 1..k: x;
then you can model the constraint like this.
constraint not exists (i in 1..n-1)(
forall(j in i+1..min(n, i+Cons_Max))
(x[j]=x[i]+1)
);
I want to investigate whether it is profitable to invest in an additional production facility, and hence I have to account for an capitilization in my objective function.
As such I am wondering if it is possible to, say, if y[t] = 1, then y[g] = 1
for g != t, g > t and where g,t is a subset of the time interval set T.
My first thought was to have:
subject to Constraint1:
y[t] = y[t-1] for all t in T
But that must surely render the solution of y to become the start value in y[0] which is something I obviously do not want.
For clarification. Assume that y[t] is a binary variable whose value is 1 if the investment is undertaken in time t, otherwise 0.
Hope anyone can shed some light into this!
Regards
The constraint y[t] = 1, then y[g] = 1 for g != t, g > t can be represented in AMPL as something like:
s.t. c{t in T: t != t0}: y[t + 1] >= y[t];
where t0 is the first element of set T. Note the use of >= instead of =. If y[t] is 1 for some t, it will drive y for all subsequent values of t to 1.