Variable shorthands - naming-conventions

Not really related to programming in general.
I don't know if this is a struggle for anybody, and there's probably an easy solution to this problem, but I couldn't find any elegant solutions.
Everyone knows that if you're a programmer, you should write readable code to save time and help yourself in the future, like giving variables better names instead of s or n.
For Example:
public void doSomething(Function<> functionToDo, int numberOfTimes)
instead of:
public void doIt(Function<> f, int n)
But sometimes, if I have a long variable name and I have to type it in an equation that makes me have to scroll right to see the whole thing, that can get frustrating.
So, my question is: Is there any way I can define a shortcut variable that doesn't affect runtime or memory?
like c++'s pre-proccesor statement #define: #define n numberOfTimes
Or, if there isn't solution to this at all, should I keep long variable names for the readability, or keep things short instead?
Any ideas are appreciated.

It's all about the context where an identifier is declared. For instance, if your function doIt was named doNTimes it would be perfectly fine to name the parameters f and n. Also, they are local to the function so you don't need to search for their documentation (which should be just before or after the function header). As you mention, in choosing a name there is also a tradeoff between identifier comprehensibility and expression comprehensibility; whereas a more descriptive name increases the former and decreases the latter the opposite holds true for a short name.
If you know that your identifier is going to be used in complex expressions it's a good idea to use a shorter name. A function call with side-effects on the other hand will (should) only be a single statement so then the name can be longer.
To summarize, I would say that it's a good idea to keep formal parameters and local variables short as that make expressions easy to comprehend; the documentation is right there in the function anyway, e.g.
public void doNTimes(Function<> f, int n); /** apply f n times */
Note: In a real scenario you would also need to provide the actual parameters of f.

Related

Should I give up grammatical correctness when naming my functions to offer regularity?

I implement several global functions in our library that look something like this:
void init_time();
void init_random();
void init_shapes();
I would like to add functions to provide a check whether those have been called:
bool is_time_initialized();
bool is_random_initialized();
bool are_shapes_initialized();
However, as you can see are_shapes_initialized falls out of the row due to the fact that shapes is plural and therefore the function name must start with are and not is. This could be a problem, as the library is rather large and not having a uniform way to group similiar functions under the same naming convention might be confusing / upsetting.
E.g. a user using IntelliSense quickly looking up function names to see if the libary offers a way to check if their initialization call happened:
They won't find are_shapes_initialized() here unless scrolling through hundreds of additional function / class names.
Just going with is_shapes_initialized() could offer clarity:
As this displays all functions, now.
But how can using wrong grammar be a good approach? Shouldn't I just assume that the user should also ask IntelliSense for "are_initialized" or just look into the documentation in the first place? Probably not, right? Should I just give up on grammatical correctness?
The way I see it, a variable is a single entity. Maybe that entity is an aggregate of other entities, such as an array or a collection, in which case it would make sense to give it a plural name e.g. a set of Shape objects could be called shapes. Even so, it is still a single object. Looking at it that way, it is grammatically acceptable to refer to it as singular. After all, is_shapes_initialized actually means "Is the variable 'shapes' initialized?"
It's the same reason we say "The Bahamas is" or "The Netherlands is", because we are referring to the singular country, not whatever plural entity it is comprised of. So yes, is_shapes_initialized can be considered grammatically correct.
It's more a matter of personal taste. I would recommend putting "is" before functions that return Boolean. This would look more like:
bool is_time_initialized();
bool is_random_initialized();
bool is_shapes_initialized();
This makes them easier to find and search for, even if they aren't grammatically correct.
You can find functions using "are" to show it is plural in places such as the DuckDuckGo app, with:
areItemsTheSame(...)
areContentsTheSame(...)
In the DuckDuckGo app, it also uses "is" to show functions return boolean, and boolean variables:
val isFullScreen: Boolean = false
isAssignableFrom(...)
In OpenTK, a C# Graphics Library, I also found usage of "are":
AreTexturesResident(...)
AreProgramsResident(...)
In the same OpenTK Libary, they use "is" singularly for functions that return boolean and boolean variables:
IsEnabledGenlock(...)
bool isControl = false;
Either usage could work. Using "are" plurally would make more sense grammatically, and using "if" plurally could make more sense for efficiency or simplifying Boolean functions.
Here's what I would do, assuming you are trying to avoid calling this function on each shape.
void init_each_shape();
bool is_each_shape_initialized();
Also assuming that you need these functions, it seems like it would make more sense to have the functions throw an exception if they do not succeed.

How to declare variables with a type in Lua

Is it possible to create variables to be a specific type in Lua?
E.g. int x = 4
If this is not possible, is there at least some way to have a fake "type" shown before the variable so that anyone reading the code will know what type the variable is supposed to be?
E.g. function addInt(int x=4, int y=5), but x/y could still be any type of variable? I find it much easier to type the variable's type before it rather than putting a comment at above the function to let any readers know what type of variable it is supposed to be.
The sole reason I'm asking isn't to limit the variable to a specific data type, but simply to have the ability to put a data type before the variable, whether it does anything or not, to let the reader know what type of variable that it is supposed to be without getting an error.
You can do this using comments:
local x = 4 -- int
function addInt(x --[[int]],
y --[[int]] )
You can make the syntax a = int(5) from your other comment work using the following:
function int(a) return a end
function string(a) return a end
function dictionary(a) return a end
a = int(5)
b = string "hello, world!"
c = dictionary({foo = "hey"})
Still, this doesn't really offer any benefits over a comment.
The only way I can think of to do this, would be by creating a custom type in C.
Lua Integer type
No. But I understand your goal is to improve understanding when reading and writing functions calls.
Stating the expected data type of parameters adds only a little in terms of giving a specification for the function. Also, some function parameters are polymorphic, accepting a specific value, or a function or table from which to obtain the value for a context in which the function operates. See string.gsub, for example.
When reading a function call, the only thing known at the call site is the name of the variable or field whose value is being invoked as a function (sometimes read as the "name" of the function) and the expressions being passed as actual parameters. It is sometimes helpful to refactor parameter expressions into named local variables to add to the readability.
When writing a function call, the name of the function is key. The names of the formal parameters are also helpful. But still, names (like types) do not comprise much of a specification. The most help comes from embedded structured documentation used in conjunction with an IDE that infers the context of a name and performs content assistance and presentations of available documentation.
luadoc is one such a system of documentation. You can write luadoc for function you declare.
Eclipse Koneki LDT is one such an IDE. Due to the dynamic nature of Lua, it is a difficult problem so LDT is not always as helpful as one would like. (To be clear, LDT does not use luadoc; It evolved its own embedded documentation system.)

Most appropriate data structure for dynamic languages field access

I'm implementing a dynamic language that will compile to C#, and it's implementing its own reflection API (.NET's is too slow, and the DLR is limited only to more recent and resourceful implementations).
For this, I've implemented a simple .GetField(string f) and .SetField(string f, object val) interface. Until recently, the implementation just switches over all possible field string values and makes the corresponding action.
Also, this dynamic language has the possibility to define anonymous objects. For those anonymous objects, at first, I had implemented a simple hash algorithm.
By now, I am looking for ways to optimize the dynamic parts of the language, and I have come across the fact that a hash algorithm for anonymous objects would be overkill. This is because the objects are usually small. I'd say the objects contain 2 or 3 fields, normally. Very rarely, they would contain more than 15 fields. It would take more time to actually hash the string and perform the lookup than if I would test for equality between them all. (This is not tested, just theoretical).
The first thing I did was to -- at compile-time -- create a red-black tree for each anonymous object declaration and have it laid onto an array so that the object can look for it in a very optimized way.
I am still divided, though, if that's the best way to do this. I could go for a perfect hashing function. Even more radically, I'm thinking about dropping the need for strings and actually work with a struct of 2 longs.
Those two longs will be encoded to support 10 chars (A-za-z0-9_) each, which is mostly a good prediction of the size of the fields. For fields larger than this, a special function (slower) receiving a string will also be provided.
The result will be that strings will be inlined (not references), and their comparisons will be as cheap as a long comparison.
Anyway, it's a little hard to find good information about this kind of optimization, since this is normally thought on a vm-level, not a static language compilation implementation.
Does anyone have any thoughts or tips about the best data structure to handle dynamic calls?
Edit:
For now, I'm really going with the string as long representation and a linear binary tree lookup.
I don't know if this is helpful, but I'll chuck it out in case;
If this is compiling to C#, do you know the complete list of fields at compile time? So as an idea, if your code reads
// dynamic
myObject.foo = "some value";
myObject.bar = 32;
then during the parse, your symbol table can build an int for each field name;
// parsing code
symbols[0] == "foo"
symbols[1] == "bar"
then generate code using arrays or lists;
// generated c#
runtimeObject[0] = "some value"; // assign myobject.foo
runtimeObject[1] = 32; // assign myobject.bar
and build up reflection as a separate array;
runtimeObject.FieldNames[0] == "foo"; // Dictionary<int, string>
runtimeObject.FieldIds["foo"] === 0; // Dictionary<string, int>
As I say, thrown out in the hope it'll be useful. No idea if it will!
Since you are likely to be using the same field and method names repeatedly, something like string interning would work well to quickly generate keys for your hash tables. It would also make string equality comparisons constant-time.
For such a small data set (expected upper bounds of 15) I think almost any hashing will be more expensive then a tree or even a list lookup, but that is really dependent on your hashing algorithm.
If you want to use a dictionary/hash then you'll need to make sure the objects you use for the key return a hash code quickly (perhaps a single constant hash code that's built once). If you can prevent collisions inside of an object (sounds pretty doable) then you'll gain the speed and scalability (well for any realistic object/class size) of a hash table.
Something that comes to mind is Ruby's symbols and message passing. I believe Ruby's symbols act as a constant to just a memory reference. So comparison is constant, they are very lite, and you can use symbols like variables (I'm a little hazy on this and don't have a Ruby interpreter on this machine). Ruby's method "calling" really turns into message passing. Something like: obj.func(arg) turns into obj.send(:func, arg) (":func" is the symbol). I would imagine that symbol makes looking up the message handler (as I'll call it) inside the object pretty efficient since it's hash code most likely doesn't need to be calculated like most objects.
Perhaps something similar could be done in .NET.

What are the steps I need to do to complete this programming assignment?

I'm having a hard time understanding what I'm supposed to do. The only thing I've figured out is I need to use yacc on the cminus.y file. I'm totally confused about everything after that. Can someone explain this to me differently so that I can understand what I need to do?
INTRODUCTION:
We will use lex/flex and yacc/Bison to generate an LALR parser. I will give you a file called cminus.y. This is a yacc format grammar file for a simple C-like language called C-minus, from the book Compiler Construction by Kenneth C. Louden. I think the grammar should be fairly obvious.
The Yahoo group has links to several descriptions of how to use yacc. Now that you know flex it should be fairly easy to learn yacc. The only base type is int. An int is 4 bytes. Booleans are handled as ints, as in C. (Actually the grammar allows you to declare a variable as a type void, but let's not do that.) You can have one-dimensional arrays.
There are no pointers, but references to array elements should be treated as pointers (as in C).
The language provides for assignment, IF-ELSE, WHILE, and function calls and returns.
We want our compiler to output MIPS assembly code, and then we will be able to run it on SPIM. For a simple compiler like this with no optimization, an IR should not be necessary. We can output assembly code directly in one pass. However, our first step is to generate a symbol table.
SYMBOL TABLE:
I like Dr. Barrett’s approach here, which uses a lot of pointers to handle objects of different types. In essence the elements of the symbol table are identifier, type and pointer to an attribute object. The structure of the attribute object will differ according to the type. We only have a small number of types to deal with. I suggest using a linear search to find symbols in the table, at least to start. You can change it to hashing later if you want better performance. (If you want to keep in C, you can do dynamic allocation of objects using malloc.)
First you need to make a list of all the different types of symbols that there are—there are not many—and what attributes would be necessary for each. Be sure to allow for new attributes to be added, because we
have not covered all the issues yet. Looking at the grammar, the question of parameter lists for functions is a place where some thought needs to be put into the design. I suggest more symbol table entries and pointers.
TESTING:
The grammar is correct, so taking the existing grammar as it is and generating a parser, the parser will accept a correct C-minus program but it won’t produce any output, because there are no code snippets associated with the rules.
We want to add code snippets to build the symbol table and print information as it does so.
When an identifier is declared, you should print the information being entered into the symbol table. If a previous declaration of the same symbol in the same scope is found, an error message should be printed.
When an identifier is referenced, you should look it up in the table to make sure it is there. An error message should be printed if it has not been declared in the current scope.
When closing a scope, warnings should be generated for unreferenced identifiers.
Your test input should be a correctly formed C-minus program, but at this point nothing much will happen on most of the production rules.
SCOPING:
The most basic approach has a global scope and a scope for each function declared.
The language allows declarations within any compound statement, i.e. scope nesting. Implementing this will require some kind of scope numbering or stacking scheme. (Stacking works best for a one-pass
compiler, which is what we are building.)
(disclaimer) I don't have much experience with compiler classes (as in school courses on compilers) but here's what I understand:
1) You need to use the tools mentioned to create a parser which, when given input will tell the user if the input is a correct program as to the grammar defined in cminus.y. I've never used yacc/bison so I don't know how it is done, but this is what seems to be done:
(input) file-of-some-sort which represents output to be parsed
(output) reply-of-some-sort which tells if the (input) is correct with respect to the provided grammar.
2) It also seems that the output needs to check for variable consistency (ie, you can't use a variable you haven't declared same as any programming language), which is done via a symbol table. In short, every time something is declared you add it to the symbol table. When you encounter an identifier, if it is not one of the language identifiers (like if or while or for), you'll look it up in the symbol table to determine if it has been declared. If it is there, go on. If it's not - print some-sort-of-error
Note: point(2) there is a simplified take on a symbol table; in reality there's more to them than I just wrote but that should get you started.
I'd start with yacc examples - see what yacc can do and how it does it. I guess there must be some big example-complete-with-symbol-table out there which you can read to understand further.
Example:
Let's take input A:
int main()
{
int a;
a = 5;
return 0;
}
And input B:
int main()
{
int a;
b = 5;
return 0;
}
and assume we're using C syntax for parsing. Your parser should deem Input A all right, but should yell "b is undeclared" for Input B.

const vs enum in D

Check out this quote from here, towards the bottom of the page. (I believe the quoted comment about consts apply to invariants as well)
Enumerations differ from consts in that they do not consume any space
in the final outputted object/library/executable, whereas consts do.
So apparently value1 will bloat the executable, while value2 is treated as a literal and doesn't appear in the object file.
const int value1 = 0xBAD;
enum int value2 = 42;
Back in C++ I always assumed this was for legacy reasons, and old compilers that couldn't optimize away constants. But if this is still true in D, there must be a deeper reason behind this. Anyone know why?
Just like in C++, an enum in D seems to be a "conserved integer literal" (edit: amazing, D2 even supports floats and strings). Its enumerators have no location. They are just immaterial as values without identity.
Placing enum is new in D2. It first defines a new variable. It is not an lvalue (so you also cannot take its address). An
enum int a = 10; // new in D2
Is like
enum : int { a = 10 }
If i can trust my poor D knowledge. So, a in here is not an lvalue (no location and you can't take its address). A const, however, has an address. If you have a global (not sure whether this is the right D terminology) const variable, the compiler usually can't optimize it away, because it doesn't know what modules can access that variable or could take its address. So it has to allocate storage for it.
I think if you have a local const, the compiler can still optimize it away just as in C++, because the compiler knows by looking at its scope whether or not anyone is interested in its address or whether everyone just takes its value.
Your actual question; why enum/const is the same in D as in C++; seems to be unanswered. Sadly there exists no good reason for this choice whatsoever. I believe that this was just an unintentional side effect in C++ that became a de facto pattern. In D the same pattern was needed, and Walter Bright decided that it should be done as in C++ such that those coming from that place would recognize what to do ... In fact, before this rather IMHO silly decision, the keyword manifest was used instead of enum for this usecase.
I think a good compiler/linker should still remove the constant. It's just that with the enum, it's actually guaranteed in the spec. The difference is primarily a matter of semantics. (Also keep in mind that 2.0 isn't complete yet)
The real purpose of enum being expanded syntactically to support single manifest constants, from what I understand, is that Don Clugston, a D template guru, was doing some crazy stuff with templates. He kept running into long build times, ridiculous compiler memory usage, etc. because the compiler kept creating internal data strucutres for const variables. One key thing about const/immutable variables compared to enums is that const/immutable variables are lvalues and can have their address taken. This means there is some extra overhead for the compiler. This usually doesn't matter, but when you're executing really complicated compile-time metaprograms, even if const variables are optimized away, this is still significant overhead at compile time.
It sounds like the enum value will be used "inline" in expressions where as the const will actually take storage and any expression referencing it will be loading the value from the memory storage.
This sound similar to the difference between const vs. readonly in C#. The former is a compile-time constant and the later is a run-time constant. This definitely affected versioning of assemblies (since assemblies referencing a readonly would receive a copy at compile time and would not get a change to the value if the referenced assembly was rebuilt with a different value).