How could I have known ETH won't work with AXI SRAM? Is it the same for SDMMC2? STM32H745 - embedded

A while ago I wrote my own ethernet driver for fun, and most of the time was spent banging my head on the keyboard because it wasn't working - as is tradition.
Problem ended up being that ethernet simply couldn't read from or write to AXI SRAM.
I made a very long post about it (along with a couple other matters) on st's community thing, that went unanswered and I eventually forgot about it.
The reason I ask here how it is I should have known, is because it doesn't really seem to mention it anywhere. The bus interconnect table and diagrams don't seem to show any potential problem:
And the block diagram:
And maybe the ART isn't what I interpret from this:
but what I interpret is that it serves as an accelerator for the pre-fetching of instructions to be executed by (assumingly) the M4 processor from D1 memory - and to establish a connection to D1 memory in general.
Is this just me not knowing the meaning of the word "access"? English isn't my first language but I'm pretty sure when you "gain access" to something, that means you get to play around with it, so reading and writing.
This has come to mind after so long because now I want to use an SD card for something I'm doing, and I find it necessary to write from D2 memory into the card, and then from the card into D1 memory.
SDMMC1 is out of question since it can't even interact with D2 memory at all, and for SDMMC2 I'm afraid I'll have the same scenario as I did with ethernet.
I realize I can still regular-dma things around, but that's quite a bit of extra complexity and extra memory use.
So - what did I miss that would have let me know I can't ethernet-dma into axi sram? And should I expect it to prevent me from sdmmc2-dma-ing into axi sram as well?
Thank you!

I didn't write my own driver, but used Cyclone TCP/IP stack on CM7 core. I had the same problem when trying to put my buffers/descriptors into SRAM4.
I observed ETH_DMACSR all REB, TEB and FBE bits set to 1. After switch to SRAM3 all is working like harm.
Unfortunately, I am unable to answer your question and say how this will work with SDMMC :(

Related

Permanent DOS Attacks - Anyone Knowledgeable?

So, I'm looking into Permanent DOS attacks for a class, and I'm having a hard time coming up with concrete examples. There's a lot of information about Phlashing (flashing firmware to either brick the device, or put malicious firmware in its place, for those of you who don't know the term) but I'd like to have a broader set of examples.
That being said, there has to be a way to write code that will do something like wear out disk arms, right? Something that will have the disk seek to the end of the disk, then back to the front, on and on. Anyone have an example of how that would be accomplished? Is there some way to specify where to track to on a disk in C (similar to traversing to a certain point in a file, but for the entire HDD!)? If not, I guess there's always trying to force a file's location on the disk... which seems like less fun trying to accomplish. Again, can you do something like that programmatically?
If anyone has any insight into these types of attacks, or any good resources for me to check into, I'd appreciate it. Maybe you read a story about it on Slashdot a few years back? Let me know! The more info I can gather, the less likely I'll be forced to kill time during my talk by bricking my router in the class :) I'm not made of money OR routers!
Seems like these would primarily be limited to physical attacks and social engineering ("To enable your computer's hidden turbo function, remove the cover and pry this part). But:
Adjust screen refresh rates to insane values to blow older CRTs
Monkey with ACPI fan, charge, or battery controls if possible to cause overheating or battery failure.
Overwrite every rewritable storage device of every kind attached to any bus. Discover and overwrite any IDE, USB, etc... device you know the flash updater details for.
Of course nothing is permanent. You can replace the hard drive, BIOS chips, CPU, motherboard, memory, etc...
Although it is mostly fictional, the halt and catch fire operation would be a very convenient and permanent DOS attack.
Steve Gibson (google his name) has a paper he wrote a few years back about protocol-level vulnerabilities in TCP/IP. Some of it is still pertinent today.
Socially engineer the power company or ISP to turn off service at the location in question.
Many devices in the computer today have their own firmwares, including but not limited to CPU, DVD, HDD, VGA, motherboard (BIOS) etc. Most of these devices also have a way of updating their respective firmwares. Which can also be used to brick them pretty efficiently. Although this does require an individual approach to every device, often using privileged instructions and undocumented interfaces.
It's possible for a virus to do this. I seem to recall an actual virus doing this back in the day, but can't find anything to back that up.
I was able to find an article where the author has a conversation with the VP from Western Digital wherein he states a program could potentially access a hard drive's firmware causing such a DOS attack:
There are back doors if you will that allow us to get into places that the operating system can't go through the IDE connector
There used to be a few viruses that could cause old CRT monitors to break. They could cause invalid sync signals out the VGA point that would be too high in frequency for the video sweep. I also remember a few that would use bad sector flagging to draw images on the old versions of Scandisk (we are talking early 90’s or older.) I don't remember and of the names or have any references, but they used to be quite annoying.
Fortunately better circuits, memory protection, API abstraction have made such attacked very difficult to impossible.

Determining failing sectors on portable flash memory

I'm trying to write a program that will detect signs of failure for portable flash memory devices (thumb drives, etc).
I have seen tools in the past that are able to detect failing sectors and other kinds of trouble on conventional mechanical hard drives, but I fear that flash memory does not have the same kind of predictable low-level access to the hardware due to the internal workings of the storage. Things like wear-leveling and other block-remapping techniques (to skip over 'dead' sectors?) lead me to believe that determining if a flash drive is failing will be difficult at best, if not impossible (short of having constant read failures and device unmounts).
Flash drives at their end-of-life should be easy to detect (constant CRC discrepancies during reads and all-out failure). But what about drives that might be failing early? Are there any tell-tale signs like slower throughput speeds that might indicate a flash drive is going to fail much sooner than normal?
Along the lines of detecting potentially bad blocks, I had considered attempting random reads/writes to a file close to or exactly the size of the entire volume, but even then is it possible that the drive might report sizes under its maximum capacity to account for 'dead' blocks?
In short, is there any way to circumvent or at least detect (algorithmically or otherwise) the use of block-remapping or other life extension techniques for flash memory?
Let me end this question by expressing my uncertainty as to whether or not this belongs on serverfault.com . This is definitely a hardware-related question, but I also desire a software solution - preferably one that I can program myself.
If this question is misplaced, I will be happy to migrate it to serverfault - but I do need a programming solution. Please let me know if you need clarification :)
Thanks!
It's interesting if badblocks can help in this case
AFAIK, Wear leveling happens at the firmware level. The hardware does not know about the bad block, till such time the firmware detects one.
And there is no known way to find this bad sectors before hand. BTW, I guess, it is not bad sectors, but bad blocks. Once a sector is bad, the whole block is marked as bad ...

What microcontroller (and other components) would I need to create a timer device?

As a hobby project to keep myself out of trouble, I'd like to build a little programmer timer device. It will basically accept a program which is a list of times and then count down from each time.
I'd like to use a C or Java micro controller. I have used BASIC in the past to make a little autonomous robot, so this time around I'd like something different.
What micro controller and display would you recommend? I am looking to keep it simple, so the program would be loaded into memory via computer (serial is ok, but USB would make it easier)
Just use a PIC like 16F84 or 16F877 for this. It is more than enough.
As LCD use a 16 x 2 LCD. It is easy to use + will give a nice look to your project.
LCD
The language is not a matter. You can use PIC C, Micro C or any thing you like. The LCD's interface is really easy to drive.
As other components you will just need the crystal and 2 capacitors as oscillator + pull up resister. The rest of the components depend on the input method that you are going to use to set the times.
If you are using a computer to load the list then you will need additional circuit to change the protocols. Use MAX 232 to do that. If you want to use USB, you need to go ahead and use a PIC with USB support. (18F series)
(source: sodoityourself.com)
This is a set of nice tutorials you can use. You can purchase the products from them as well. I purchased once from them.
I would go with the msp430. An ez430 is $20 and you can get them at digikey or from ti directly, then sets of 3 microcontroller boards for $10 after that. llvm and gcc (and binutils) compiler support. Super simple to program, extremely small and extremely low power.
There are many ways to do this, and a number of people have already given pretty good suggestions AVR or PIC are good starting points for a microcontroller to work with that doesn't require too much in the way of complicated setup (hardware & software) or expense (these micros are very cheap). Honestly I'm somewhat surprised that nobody has mentioned Arduino here yet, which happens to have the advantage of being pretty easy to get started with, provides a USB connection (USB->Serial, really), and if you don't like the board that the ATMega MCU is plugged into, you can later plug it in wherever you might want it. Also, while the provided programming environment provides some high level tools to easily protype things you're still free to tweak the registers on the device and write any C code you might want to run on it.
As for an LCD display to use, I would recommend looking for anything that's either based on an HD44780 or emulates the behavior of one. These will typically use a set of parallel lines for talking to the display, but there are tons code examples for interfacing with these. In Arduino's case, you can find examples for this type of display, and many others, on the Arduino Playground here: http://www.arduino.cc/playground/Code/LCD
As far as a clock is concerned, you can use the built-in clock that many 8-bit micros these days provide, although they're not always ideal in terms of precision. You can find an example for Arduino on doing this sort of thing here: http://www.arduino.cc/playground/Code/DateTime. If you want something that might be a little more precise you can get a DS1307 (Arduino example: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1191209057/0).
I don't necessarily mean to ram you towards an Arduino, since there are a huge number of ways to do this sort of thing. Lately I've been working with 32-bit ARM micros (don't do that route first, much steeper learning curve, but they have many benefits) and I might use something in that ecosystem these days, but the Arduino is easy to recommend because it's relatively inexpensive, there's a large community of people out there using it, and chances are you can find a code example for at least part of what you're trying to do. When you need something that has more horsepower, configuration options, or RAM, there are options out there.
Here are a few places where you can find some neat hardware (Arduino-related and otherwise) for projects like the one you're describing:
SparkFun Electronics
Adafruit Industries
DigiKey (this is a general electronics supplier, they have a bit of everything)
There are certainly tons more, though :-)
I agree with the other answers about using a PIC.
The PIC16F family does have C compilers available, though it is not ideally suited for C code. If performance is an issue, the 18F family would be better.
Note also that some PICs have internal RC oscillators. These aren't as precise as external crystals, but if that doesn't matter, then it's one less component (or three with its capacitors) to put on your board.
Microchip's ICD PIC programmer (for downloading and debugging your PIC software) plugs into the PC's USB port, and connects to the microcontroller via an RJ-11 connector.
Separately, if you want the software on the microcontroller to send data to the PC (e.g. to print messages in HyperTerminal), you can use a USB to RS232/TTL converter. One end goes into your PC's USB socket, and appears as a normal serial port; the other comes out to 5 V or 3.3 V signals that can be connected directly to your processor's UART, with no level-shifting required.
We've used TTL-232R-3V3 from FDTI Chip, which works perfectly for this kind of application.
There are several ways to do this, and there is a lot of information on the net. If you are going to use micro controllers then you might need to invest in some programming equipment for them. This won't cost you much though.
Simplest way is to use the sinus wave from the power grid. In Europe the AC power has a frequency of 50Hz, and you can use that as the basis for your clock signal.
I've used Atmel's ATtiny and ATmega, which are great for programming simple and advanced projects. You can program it with C or Assembly, there are lots of great projects for it on the net, and the programmers available are very cheap.
Here is a project I found by Googling AVR 7 segment clock.
A second vote for PIC. Also, I recommend the magazine Circuit Cellar Ink. Some technical bookstores carry it, or you can subscribe: http://www.circellar.com/
PIC series will be good, since you are creating a timer, I recommend C or Assembly (Assembly is good), and use MPLAB as the development environment. You can check how accurate your timer with 'Stopwatch' in MPLAB. Also PIC16F877 has built in Hardware Serial Port. Also PIC16F628 has a built in Hardware serial port. But PIC16F877 has more ports. For more accurate timers, using higher frequency oscillators is recommended.

starting a microcontroller simulator/emulator

I would like to create/start a simulator for the following microcontroller board: http://www.sparkfun.com/commerce/product_info.php?products_id=707#
The firmware is written in assembly so I'm looking for some pointers on how one would go about simulating the inputs that the hardware would receive and then the simulator would respond to the outputs from the firmware. (which would also require running the firmware in the simulated environment).
Any pointers on how to start?
Thanks
Chris
Writing a whole emulator is going to be a real challenge. I've attempted to write an ARM emulator before, and let me tell you, it's not a small project. You're going to either have to emulate the entire CPU core, or find one that's already written.
You'll also need to figure out how all the IO works. There may be docs from sparkfun about that board, but you'll need to write a memory manager if it uses MMIO, etc.
The concept of an emulator isn't that far away from an interpreter, really. You need to interpret the firmware code, and basically follow along with the instructions.
I would recommend a good interactive debugger instead of tackling an emulator. The chances of destroying the hardware is low, but really, would you rather buy a new board or spend 9 months writing something that won't implement the entire system?
It's likely that the PIC 18F2520 already has an emulator core written for it, but you'll need to delve into all the hardware specs to see how all the IO is mapped still. If you're feeling up to it, it would be a good project, but I would consider just using a remote debugger instead.
You'll have to write a PIC simulator and then emulate the IO functionality of the ports.
To be honest, it looks like its designed as a dev kit - I wouldn't worry about your code destroying the device if you take care. Unless this a runner-up for an enterprise package, I would seriously question the ROI on writing a sim.
Is there a particular reason to make an emulator/simulator, vs. just using the real thing?
The board is inexpensive; Microchip now has the RealICE debugger which is quite a bit more responsive than the old ICD2 "hockey puck".
Microchip's MPLAB already has a built-in simulator. It won't simulate the whole board for you, but it will handle the 18F2520. You can sort of use input test vectors & log output files, I've done this before with a different Microchip IC and it was doable but kinda cumbersome. I would suggest you take the unit-testing approach and modularize the way you do things; figure out your test inputs and expected outputs for a manageable piece of the system.
It's likely that the PIC 18F2520 already has an emulator core written for it,
An open source, cross-platform simulator for microchip/PICs is available under the name of "gpsim".
It's extremely unlikely that a bug in your code could damage the physical circuitry. If that's possible, then it is either a bug in the board design or it should be very clearly documented.
If I may offer you a suggestion from many years of experience working with these devices: don't program them in assembly. You will go insane. Use C or BASIC or some higher-level language. Microchip produces a C compiler for most of their chips (dunno about this one), and other companies produce them as well.
If you insist on using an emulator, I'm pretty sure Microchip makes an emulator for nearly every one of their microcontrollers (at least one from each product line, which would probably be good enough). These emulators are not always cheap, and I'm unsure of their ability to accept complex external input.
If you still want to try writing your own, I think you'll find that emulating the PIC itself will be fairly straightforward -- the format of all the opcodes is well documented, as is the memory architecture, etc. It's going to be emulating the other devices on the board and the interconnections between them that will kill you. You might want to look into coding the interconnections between the components using a VHDL tool that will allow you to create custom simulations for the different components.
Isn't this a hardware-in-the-loop simulator problem? (e.g. http://www.embedded.com/15201692 )

Is low-level / embedded systems programming hard for software developers? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
Given my background as a generalist, I can cover much of the area from analog electronics to writing simple applications that interface to a RDBMS backend.
I currently work in a company that develops hardware to solve industry-specific problems. We have an experienced programmer that have written business apps, video games, and a whole bunch of other stuff for PC's. But when I talk to him about doing low-level programming, he simultaneously express interest and also doubt/uncertainty about joining the project.
Even when talking about PC's, he seems to be more comfortable operating at the language level than the lower-level stuff (instruction sets, ISR's). Still, he's a smart guy, and I think he'd enjoy the work once he is over the initial learning hump. But maybe that's my own enthusiasm for low-level stuff talking... If he was truly interested, maybe he would already have started learning stuff in that direction?
Do you have experience in making that software-to-hardware (or low-level software) transition? Or, better yet, of taking a software only guy, and transitioning him to the low-level stuff?
Edit:
P.S. I'd love to hear from the responders what their own background is -- EE, CS, both?
At the end of the day, everything is an API.
Need to write code for an SPI peripheral inside a microcontroller? Well, get the datasheet or hardware manual, and look at the SPI peripheral. It's one, big, complex API.
The problem is that you have to understand the hardware and some basic EE fundamentals in order to comprehend what the API means. The datasheet isn't written by and for SW developers, it was written for hardware engineers, and maybe software engineers.
So it's all from the perspective of the hardware (face it - the microcontroller company is a hardware company filled with hardware/asic engineers).
Which means the transition is by no means simple and straightforward.
But it's not difficult - it's just a slightly different domain. If you can implement a study program, start off with Rabbit Semiconductor's kits. There's enough software there so a SW guy can really dig in with little effort, and the HW is easy to deal with because everything is wrapped in nice little libraries. When they want to do something complex they can dig into the direct hardware access and fiddle at the lower level, but at the same time they can do some pretty cool things such as build little webservers or pan/tilt network cameras. There are other companies with similar offerings, but Rabbit is really focused on making hardware easy for software engineers.
Alternately, get them into the Android platform. It looks like a unix system to them, until they want to do something interesting, and then they'll have the desire to attack that little issue and they'll learn about the hardware.
If you really want to jump in the deep end, go with an arduino kit - cheap, free compilers and libraries, pretty easy to start off with, but you have to hook wires up to do something interesting, which might be too big of a hurdle for a reluctant software engineer. But a little help and a few nudges in the right direction and they will be absolutely thrilled to have a little LED display that wibbles* like the nightrider lights...
-Adam
*Yes, that's a technical engineering term.
The best embedded programmers I've worked with are EE trained and learned SW on the job. The worst embedded developers are recent CS graduates who think SW is the only way to solve a problem. I like to think of embedded programming as the bottom of the SW pyramid. It's a stable abstraction layer/foundation that makes life easy for the app developers.
"Hard" is an extremely relative term. If you're used to thinking in the tight, sometimes convoluted way you need to for small embedded code (for example, you're a driver developer), then certainly it's not "hard".
Not to "bash" (no pun intended) shell scripters, but if you write perl and shell scripts all day, then it might very well be "hard".
Likewise if you're a UI guy for Windows. It's a different kind of thinking.
Why embedded development is "hard":
1) The context may switch to an interrupt between each machine instruction. Since high level language constructs may map to multiple assembly instructins, this might even be within a line of code, e.g. long var = 0xAAAA5555. If accessed in an interrupt service routine, in a 16 bit processore var might only be half set.
2) Visibility into the system is limited. You may not even have output to Hyperterm unless you write it yourself. Emulators don't always work that well or consistently (though they are way better than they used to be). You will have to know how to use oscilloscopes and logic analyzers.
3) Operations take time. For example, say your serial transmitter uses an interrupt to signal when it is time to send another byte. You could write 16 bytes to a transmit buffer, then clear interrupts and wonder why your message is never sent. Timing in general is a tricky part of embedded programming.
4) You are subject to subtle race conditions that occur only rarely and are very difficult to debug.
5) You have to read the manual. A lot. You can't make it work by fooling around. Sometimes 20 things have to be set up correctly to get what you are after.
6) The hardware doesn't always work or is easy to damage, and it takes a while to figure out that you broke it.
7) Software repairs in embedded systems are usually very expensive. You can't just update a web page. A recall can erase any profit you made on the device.
There are probably more but I've got this race condition to solve...
This is very subjective I guess, his reasons could be many. But if he's like me, I know where he's coming from. Let me explain.
In my career I've dedicated 6 years to the telecom industry, working a lot with embedding SDK middleware into low-end mobile phones etc.
Most embedded environments I've experienced are like harsh weather for a programmer, you constantly have to overcome limitations in resources etc. Some might find this a challenge and enjoy it for the challenge itself, some might feel close to "the real stuff" - the hardware, some might feel it limits their creativity.
I'm the kind who feels it limits my creativity.
I enjoy being back in Windows desktop environment and flap my wings with elaborate class designs, stretch my legs a few clockcycles extra, use unnecessary amounts of memory for diagnostics etc.
On certain embedded units in the past, I hardly had support for fseek() (an ANSI C standard file function). If lucky, a "watchdog" could give clues to where something crashed. Not to mention the pain of communicating with the user in single-threaded preemptive swamps.
Well, you know what I'm getting at. In my opinion it's not necessarily hard, but it's quite a leap, with potentially little reuse of your current experience.
Regards
Robert
There is a very real difference in mindset from user-level application development (ie, general purpose PC or Web applications) to hard deadline, real-time response application development (ie, the hardware/software interface).
Interrupts, instruction sets, context switching and hard resource constraints are relatively unknown to your average developer. I'm assuming here that your 'average developer' is not an Electrical/Electronic or other Engineer by training.
The transition for this developer you mention may be well outside his comfort zone. Some of us like stretching like that. Others of us may have decided the view isn't worth the climb.
Likewise, folks who've been in the hardware area (ie, Engineers) often have difficulty with the assumptions and language of software development.
These are gross generalities, of course, but hopefully give some insight.
He needs to be comfortable with the low-level stuff, but mostly for debugging and field issues. There is a serious learning curve depending on the architecture, but not impossible. On the other hand, the low-level code takes (in general) more time and debugging than higher-level code. So if you need to be going back to low-level all the time, then perhaps something isn't right in the design. Even for the embedded controls I've built, I spend the vast majority of time in high-level code. Although when you have issues, it is extremely advantageous to have a very good low-level knowledge.
I am an EE turned Software Engineer. I prefer programming low level. Most software developers classically trained that I know do not want to operate at this level they want apis to call. So for me it is a win win, I create the low level driver and api for them to use. There is a "new" degree, at least new since I went to college, called Computer Engineer. Hmm, it might be an electrical engineering degree not computer science, but it is a nice mix of software and digital hardware basics. The individuals that I have worked with from this field are much more comfortable with low level.
If the individual is not comfortable or willing then place them somewhere where they are comfortable. Let them do documentation or work on the user interface. If all of the work at the company requires low level work then this individual needs to do it or find another job. Dont sugar coat it.
I also think they will enjoy it once they get over the hump, the freedom you have at that level, not hindered by operating systems, etc. Recently I witnessed a few co-workers experience for the first time seeing their software run under simulation. Every net within the processor and other on chip peripherals. No you dont have a table on a gui (debugger) showing the current state of the memory, you have to look at the memory bus, look for the address you are interested in, look for a read or write signal and the data bus. I worry about the day that silicon arrives and they no longer have this level of visibility. Will be like an addict in detox.
Well, I cut my teeth on hardware when I started reading Popular Electronics at age 14 – this was BEFORE personal computers, in case you were wondering and if you weren’t well, you know anyway. lol
I’ve done the low level bit-bang stuff on the 8048/51 microprocessor, done PIC’s and some other single chip variations and of course Rabbit Semiconductor. (great if you're into C). That’s great (and fun) stuff; Yes, there is a different way of looking at things – not harder, but some of that information is a bit harder to come by as it isn’t as discussed as the software issues. (Of course, this depends on the circle of friends with which you associate, eh).
But, having said all of this, I want to remind you of a technology that started to bridge the gap for programmers into the world of hardware and has since become a very MAJOR player and that is the .NET micro framework. You can find information on this technology at the following;
http://msdn.microsoft.com/en-us/embedded/bb267253.aspx
It addresses some of the same issues that .NET web development addressed in that you can use some (quite a bit, actually) of your existing PC based knowledge in the new environments – Some caution, of course, as your target machine doesn’t have 4 GIG of RAM – it may only have 64K (or less)
Starting in version 2.5 of the .NET micro framework, you have access to networking and web services – way kewl, eh? It doesn’t stop there … Want to control the lights in your house? How about a temp recording station? All with the skills you already have. Well, mostly -- Check out the link.
The SDK plugs into your VisualStudio IDE. There are a number of “Development Kits” available for a very reasonable amount of cash – Now, what would normally take a big learning curve in components, building a circuit board and wiring up “stuff” can be done reasonably easy with a dev kit and some pretty simple code – Of course, you may need to do the occasional bit bang operation, but more and more sensor folks are providing .NET micro framework drivers – so, the hardware development may be closer than you think…
Hope it helps...
I like both. Embedded challenges me and really gets me going in a visceral way. Making something that affects the macro physical world is very satisfactory. But I've had to do a lot of catch up on the electrical/electronics end, since my bachelor's is in computer science. I've a pretty generalist background, where I studied ai, graphics, compilers, natural language, etc. Now I'm doing graduate work in embedded systems. The really tough part is adjusting to the lack of runtime facilities like an operating system.
Low-level embedded programming also tends to include low-level debugging. Which (in my experience) usually involves (at least) the use of an oscilloscope. Unless your colleague is going to be happy spending at least some of the time in physical contact with the hardware and thinking in terms of microseconds and volts, I'd be tempted to leave them be.
Agreed on the "hard" term is quite relative.
I would say different, as you would need to employ different development patterns that you won't use in other kind of environment.
The time constraint for instance could requires a learning curve.
However being curious, would be a quality for a developer, wouldn't be?
You are right in that anyone with enough knowledge not to feel completely lost in an area (over the hump?) will enjoy the challenges of learning something new.
I myself would feel quite nervous being moving to the level of instruction sets etc as there is a huge amount of background knowledge needed to feel comfortable in the environment.
It may make a difference if you are able to support the developer in learning how to do this. Having someone there you can ask and talk through issue with is a huge help in that sort of domain change.
It may be worth having the developer assigned to a smaller project with others as a first step and see how that goes. If he expresses enthusiasm to try another project, things should flow on from there.
I would say it is not any harder, it just requires a different knowledge set, different considerations.
I think that it depends on the way that they program in their chosen environment, and the type of embedded work that you're talking about.
Working on an embedded linux platform, say, is a far smaller jump than trying to write code on an 8 bit platform with no operating system at all.
If they are the type of person that has an understanding of what is going on underneath the api and environment that they are used to, then it won't be too much of a stretch to move into embedded development.
However, if their world view stops at the high level api that they've been using, and they have no concept of anything beneath that, they are going to have a really hard time.
As a (very) general statement if they are comfortable working on multithreaded applications they will probably be ok, as that shares some of the same issues of data volatility that you have when working on embedded projects.
With all of that said, I've seen more embedded programmers successfully working in PC development than I have the reverse. (of course I might not have seen a fair cross section)
"But when I talk to him about doing low-level programming, he simultaneously express interest and also doubt/uncertainty about joining the project." -- That means you let him try and you prepare to hire someone else in case he doesn't pass the learning curve.
i began as a SW engineer i'm now HW one !
the important is to understand how it works and to be motivated !