How to "override a binding" in a ZLayer? - testing

When working with ZIO layers you have to deal with a whole different concept of what dependency injection is.
Usual approach is not completely typesafe and depends on some form of runtime reflection, and a container that registers constructors and built instances (in case they're supposed to be singletons).
I, for instance, when working with Kotlin, tend to use Kodein (pretty awesome library), and Kodein uses the usual approach of building a container, binding constructors and well, the usual DI stuff
When working with ZIO layers there are no containers, there are no bindings, it's just plain old function composition on steroids.
I prefer that approach, but I'm missing a feature that only the traditional approach has: overriding bindings.
With that feature I can take my actual application container and surgically replace one of its bindings in order to do test different parts of the system, connected to the rest of the app.
More given the fact that with the usual approach there's no such thing as hidden dependencies (nor explicitly visible).
Anyway... Is there a way to achieve kind of a similar feature? If so, how?

Related

What criteria should one used to determine if Dependency Injection Framework should be used? [duplicate]

I've had a certain feeling these last couple of days that dependency-injection should really be called "I can't make up my mind"-pattern. I know this might sound silly, but really it's about the reasoning behind why I should use Dependency Injection (DI). Often it is said that I should use DI, to achieve a higher level of loose-coupling, and I get that part. But really... how often do I change my database, once my choice has fallen on MS SQL or MySQL .. Very rarely right?
Does anyone have some very compelling reasons why DI is the way to go?
Two words, unit testing.
One of the most compelling reasons for DI is to allow easier unit testing without having to hit a database and worry about setting up 'test' data.
DI is very useful for decoupling your system. If all you're using it for is to decouple the database implementation from the rest of your application, then either your application is pretty simple or you need to do a lot more analysis on the problem domain and discover what components within your problem domain are the most likely to change and the components within your system that have a large amount of coupling.
DI is most useful when you're aiming for code reuse, versatility and robustness to changes in your problem domain.
How relevant it is to your project depends upon the expected lifespan of your code. Depending on the type of work you're doing zero reuse from one project to the next for the majority of code you're writing might actually be quite acceptable.
An example for use the use of DI is in creating an application that can be deployed for several clients using DI to inject customisations for the client, which could also be described as the GOF Strategy pattern. Many of the GOF patterns can be facilitated with the use of a DI framework.
DI is more relevant to Enterprise application development in which you have a large amount of code, complicated business requirements and an expectation (or hope) that the system will be maintained for many years or decades.
Even if you don't change the structure of your program during development phases you will find out you need to access several subsystems from different parts of your program. With DI each of your classes just needs to ask for services and you're free of having to provide all the wiring manually.
This really helps me on concentrating on the interaction of things in the software design and not on "who needs to carry what around because someone else needs it later".
Additionally it also just saves a LOT of work writing boilerplate code. Do I need a singleton? I just configure a class to be one. Can I test with such a "singleton"? Yes, I still can (since I just CONFIGURED it to exist only once, but the test can instantiate an alternative implementation).
But, by the way before I was using DI I didn't really understand its worth, but trying it was a real eye-opener to me: My designs are a lot more object-oriented as they have been before.
By the way, with the current application I DON'T unit-test (bad, bad me) but I STILL couldn't live with DI anymore. It is so much easier moving things around and keeping classes small and simple.
While I semi-agree with you with the DB example, one of the large things that I found helpful to use DI is to help me test the layer I build on top of the database.
Here's an example...
You have your database.
You have your code that accesses the database and returns objects
You have business domain objects that take the previous item's objects and do some logic with them.
If you merge the data access with your business domain logic, your domain objects can become difficult to test. DI allows you to inject your own data access objects into your domain so that you don't depend on the database for testing or possibly demonstrations (ran a demo where some data was pulled in from xml instead of a database).
Abstracting 3rd party components and frameworks like this would also help you.
Aside from the testing example, there's a few places where DI can be used through a Design by Contract approach. You may find it appropriate to create a processing engine of sorts that calls methods of the objects you're injecting into it. While it may not truly "process it" it runs the methods that have different implementation in each object you provide.
I saw an example of this where the every business domain object had a "Save" function that the was called after it was injected into the processor. The processor modified the component with configuration information and Save handled the object's primary state. In essence, DI supplemented the polymorphic method implementation of the objects that conformed to the Interface.
Dependency Injection gives you the ability to test specific units of code in isolation.
Say I have a class Foo for example that takes an instance of a class Bar in its constructor. One of the methods on Foo might check that a Property value of Bar is one which allows some other processing of Bar to take place.
public class Foo
{
private Bar _bar;
public Foo(Bar bar)
{
_bar = bar;
}
public bool IsPropertyOfBarValid()
{
return _bar.SomeProperty == PropertyEnum.ValidProperty;
}
}
Now let's say that Bar is instantiated and it's Properties are set to data from some datasource in it's constructor. How might I go about testing the IsPropertyOfBarValid() method of Foo (ignoring the fact that this is an incredibly simple example)? Well, Foo is dependent on the instance of Bar passed in to the constructor, which in turn is dependent on the data from the datasource that it's properties are set to. What we would like to do is have some way of isolating Foo from the resources it depends upon so that we can test it in isolation
This is where Dependency Injection comes in. What we want is to have some way of faking an instance of Bar passed to Foo such that we can control the properties set on this fake Bar and achieve what we set out to do, test that the implementation of IsPropertyOfBarValid() does what we expect it to do, i.e. return true when Bar.SomeProperty == PropertyEnum.ValidProperty and false for any other value.
There are two types of fake object, Mocks and Stubs. Stubs provide input for the application under test so that the test can be performed on something else. Mocks on the other hand provide input to the test to decide on pass\fail.
Martin Fowler has a great article on the difference between Mocks and Stubs
I think that DI is worth using when you have many services/components whose implementations must be selected at runtime based on external configuration. (Note that such configuration can take the form of an XML file or a combination of code annotations and separate classes; choose what is more convenient.)
Otherwise, I would simply use a ServiceLocator, which is much "lighter" and easier to understand than a whole DI framework.
For unit testing, I prefer to use a mocking API that can mock objects on demand, instead of requiring them to be "injected" into the tested unit from a test. For Java, one such library is my own, JMockit.
Aside from loose coupling, testing of any type is achieved with much greater ease thanks to DI. You can put replace an existing dependency of a class under test with a mock, a dummy or even another version. If a class is created with its dependencies directly instantiated it can often be difficult or even impossible to "stub" them out if required.
I just understood tonight.
For me, dependancy injection is a method for instantiate objects which require a lot of parameters to work in a specific context.
When should you use dependancy injection?
You can use dependancy injection if you instanciate in a static way an object. For example, if you use a class which can convert objects into XML file or JSON file and if you need only the XML file. You will have to instanciate the object and configure a lot of thing if you don't use dependancy injection.
When should you not use depandancy injection?
If an object is instanciated with request parameters (after a submission form), you should not use depandancy injection because the object is not instanciated in a static way.

Several Implementations of a Domain-Model

for a highly modular application (implemented with OSGi) we use one module just for the domain model. The implementations of the interfaces are just simple POJOs for most flexibility (other modules which depend on the domain-module don't inherit any other dependency).
So you could see the environment like this: There are just these simple domain-objects being passed from one module to the other. So we could call them POJO-DTOs, right? The DTOs don't know anything of there data storage.
With this architecture a module has a minimal dependency to that domain-model. Modules can be easily developed independently.
One problem we are facing is that a module can implement its own internal domain using the same interfaces of the domain-module. So the two implementations need to be copied from one side to the other. This is an error-prone thing!
Has anyone a good technique/concept/library to copy/merge two implementations with the same interfaces?
Thanks!

What is the correct system design when dealing with third party API?

This blog post by Joubert just opened my eyes. I have dealt with a lot of design patterns in Java and other languages. But Objective-C is a rather unique language.
Let's say that in a project we talk with a third party API, like Dropbox or Facebook. What I've been doing so far is to combine everything that has to do with the third party API into a singleton class. So I can access the class from anywhere in my view controllers. I can just go for example: [[DropboxModel sharedInstance] uploadFile:aFile]
However as the blog post noted, this isn't efficient and leads to spaghetti code and bad unit testing. So what is the best way to design the system so that it's modular and easy to use?
I would dispute the idea that singletons lead to spaghetti code and are inefficient. However, the unit testing problem is legitimate and singletons do reduce modularity since they are really just fancy global variables.
I like Joubert's idea of injecting the singleton instance into the controller(s) from the app delegate (which is itself a singleton, ahem). I think the same approach would work for you.
What I normally do in these situations where I might want to use a different stub object in unit tests is define a protocol to represent the API and make my "real" API object conform to it and also my stub API object. I use the stub in the unit tests and the real object in the app.
Not that this really solves any architectural problems associated with singletons, but for the sake of readability and typability you can always define a macro in your DropboxModel header file, eg:
#define DBM [DropboxModel sharedInstance]
<...>
[DBM uploadFile:aFile];
i'll typically create an abstraction layer. this wraps a simple interface onto the library's calls which you use, while giving you a chance to introduce whatever state (e.g. variables) you'll need.
you can then expose only what you need and use, and add your own state, checks, and conveniently deal with all issues of the library from one place. 'issues' may be introduced for several reasons - it could be threading, resources, state, or undesired behavioral changes across versions.
most libraries are not meant to be used solely via a singleton. in such cases, it's best (subjective) to create interfaces as you would normally -- of course, being mindful of the constraints behind the abstraction layer. in that sense, you simply create object based interfaces which are divided by size/task/purpose/functionality -- all as you'd usually do when writing your own classes.
if you don't need the library all over the place, then i think it's also good to wrap what you need to minimize dependencies (increasingly important in large projects).
if you use the library all over the place, then you may also prefer to use the calls without the abstraction layer.

Should I encapsulate my IoC container?

Want to improve this post? Provide detailed answers to this question, including citations and an explanation of why your answer is correct. Answers without enough detail may be edited or deleted.
I'm trying to decide whether or not it makes sense to go through the extra effort to encapsulate my IoC container. Experience tells me that I should put a layer of encapsulation between my apps and any third-party component. I just don't know if this is bordering on overkill.
I can think of situations where I might want to switch containers. For instance, my current container ceases to be maintained, or a different container is proven to be more light-weight/performant and better fits my needs. If this happens, then I'll potentially have a lot of re-wiring to do.
To be clear, I'm considering encapsulation of the registration and resolution of types. I think it's a no-brainer to encapsulate resolution - I'd hope it's common practice to have a helper/util class delegating to the container.
EDIT:
The assumption is that I prefer to wire-up my types programmatically for type-safety, compile-time checking and refactorability. It's this code and its dependency on the container that I'm looking to protect myself from.
I've also been using an IoC container for several other projects that share a lot of the same relationships, but the container is a pain to work with so I want change. But, a change means I lose the reusability of the registration code. Hence, why I'm contemplating encapsulation. It's not a huge burden, but one that I'd, nevertheless, like to mitigate.
I'm looking to:
Minimize the impact of change in containers / versions of containers
Provide some level of type-registration consistency across projects that may use different containers
Provide interface methods that make sense to me (RegisterSingleton<T,T> rather than RegisterType<T,T>( SomeLifetimeProvider ) - using Unity as an example).
Augment the container as conditions/scalability requirements change e.g. adding better caching, logging, etc during resolution/registration.
Provide my own model for registering type mappings.
Say I want to create a bunch of RegistrationHandler objects in an assembly/package and so I can easily segregate registration responsibilities across multiple classes and automatically pickup these handlers without changing code anywhere else.
I realize this is a bit subjective, so pros/cons might be helpful
Thanks!
Do it later, and only if you actually have the need to change IOC containers.
Pick an IOC container that is non-invasive. That is, one where the objects being connected to each other don't have any dependencies on the IOC container. In this case, there's nothing to encapsulate.
If you have to pick an IOC container that requires that you have dependencies on the container, choose one with the simplest dependencies/API you can. If you need to replace this IOC container (and you probably won't), implement adapters that bridge the new API to the old one.
In other words, let the first IOC container be the one that defines the interfaces for any future container so that you don't have to invent your own, and you can delay any of this sort of work until you absolutely need it.
EDIT:
I don't see a way of guaranteeing type-safety short of either:
Designing a relatively complex implementation of the Builder pattern along with visitor implementations that would write IOC configuration files, or something equivalent.
Implementing a type-safe IOC configuration DSL. (My choice if I had multiple apps that required swappable IOC containers.)
Yeah go for it. It's not a whole lot of extra effort and like you say, it gives you better isolation from third party components.
It also means that you can easily switch out the IoC container if you find something that's better. I recently did this with swapping out the Spring.net IoC container for structuremap.
The ASP.NET MVC Contrib project on codeplex is a pretty good place to start. This is what I based my implementation off.
It's best practice to do something only if there's an actual need for it, and never code something that you guess to be required sometimes in the future (that's the so-called YAGNI-principle). If your architecture is ok, you can easily change the container, if it actually should become necessary...
If you think you need this kind of flexibility, you may look at the Common Service Locator project at CodePlex. It does exactly what you look for: providing a common facade for various IoC containers.
HTH!
Rather than encapsulating the IOC container itself, I prefer to isolate the locus of interaction with the IOC container. For example, in ASP.Net MVC, I generally limit the exposure to the container to the controller factory and the global.aspx.cs file, where it's usually setup.
In my mind, having a lot of code that knows about the IOC container is an antipattern that increases complexity. I've seen a fair amount of code in which objects feel free to ask the IOC container for their dependencies, and then they've basically reduced the IOC container to a high-maintenance Service Locator.
Since IOC containers can resolve dependencies to an arbitrary degree of depth, it's pretty easy to make the controller factory the component that's responsible for involving the inversion of control containers. The constructor for each controller essentially specifies the services/repositories/gateways it needs.
For any of my apps, swapping the IOC container would essentially be a matter of rewriting the code the configures the container (specifies the bindings, etc.) and hooks up the controller factory. For apps exposed as services, the same basic idea should be reasonably manageable, though depending on the constraints of your runtime, you might have to use setter injection rather than constructor injection.

What is Inversion of Control?

Inversion of Control (IoC) can be quite confusing when it is first encountered.
What is it?
Which problem does it solve?
When is it appropriate to use and when not?
The Inversion-of-Control (IoC) pattern, is about providing any kind of callback, which "implements" and/or controls reaction, instead of acting ourselves directly (in other words, inversion and/or redirecting control to the external handler/controller).
The Dependency-Injection (DI) pattern is a more specific version of IoC pattern, and is all about removing dependencies from your code.
Every DI implementation can be considered IoC, but one should not call it IoC, because implementing Dependency-Injection is harder than callback (Don't lower your product's worth by using the general term "IoC" instead).
For DI example, say your application has a text-editor component, and you want to provide spell checking. Your standard code would look something like this:
public class TextEditor {
private SpellChecker checker;
public TextEditor() {
this.checker = new SpellChecker();
}
}
What we've done here creates a dependency between the TextEditor and the SpellChecker.
In an IoC scenario we would instead do something like this:
public class TextEditor {
private IocSpellChecker checker;
public TextEditor(IocSpellChecker checker) {
this.checker = checker;
}
}
In the first code example we are instantiating SpellChecker (this.checker = new SpellChecker();), which means the TextEditor class directly depends on the SpellChecker class.
In the second code example we are creating an abstraction by having the SpellChecker dependency class in TextEditor's constructor signature (not initializing dependency in class). This allows us to call the dependency then pass it to the TextEditor class like so:
SpellChecker sc = new SpellChecker(); // dependency
TextEditor textEditor = new TextEditor(sc);
Now the client creating the TextEditor class has control over which SpellChecker implementation to use because we're injecting the dependency into the TextEditor signature.
Note that just like IoC being the base of many other patterns, above sample is only one of many Dependency-Injection kinds, for example:
Constructor Injection.
Where an instance of IocSpellChecker would be passed to constructor, either automatically or similar to above manually.
Setter Injection.
Where an instance of IocSpellChecker would be passed through setter-method or public property.
Service-lookup and/or Service-locator
Where TextEditor would ask a known provider for a globally-used-instance (service) of IocSpellChecker type (and that maybe without storing said instance, and instead, asking the provider again and again).
Inversion of Control is what you get when your program callbacks, e.g. like a gui program.
For example, in an old school menu, you might have:
print "enter your name"
read name
print "enter your address"
read address
etc...
store in database
thereby controlling the flow of user interaction.
In a GUI program or somesuch, instead we say:
when the user types in field a, store it in NAME
when the user types in field b, store it in ADDRESS
when the user clicks the save button, call StoreInDatabase
So now control is inverted... instead of the computer accepting user input in a fixed order, the user controls the order in which the data is entered, and when the data is saved in the database.
Basically, anything with an event loop, callbacks, or execute triggers falls into this category.
What is Inversion of Control?
If you follow these simple two steps, you have done inversion of control:
Separate what-to-do part from when-to-do part.
Ensure that when part knows as little as possible about what part; and vice versa.
There are several techniques possible for each of these steps based on the technology/language you are using for your implementation.
--
The inversion part of the Inversion of Control (IoC) is the confusing thing; because inversion is the relative term. The best way to understand IoC is to forget about that word!
--
Examples
Event Handling. Event Handlers (what-to-do part) -- Raising Events (when-to-do part)
Dependency Injection. Code that constructs a dependency (what-to-do part) -- instantiating and injecting that dependency for the clients when needed, which is usually taken care of by the DI tools such as Dagger (when-to-do-part).
Interfaces. Component client (when-to-do part) -- Component Interface implementation (what-to-do part)
xUnit fixture. Setup and TearDown (what-to-do part) -- xUnit frameworks calls to Setup at the beginning and TearDown at the end (when-to-do part)
Template method design pattern. template method when-to-do part -- primitive subclass implementation what-to-do part
DLL container methods in COM. DllMain, DllCanUnload, etc (what-to-do part) -- COM/OS (when-to-do part)
Inversion of Controls is about separating concerns.
Without IoC: You have a laptop computer and you accidentally break the screen. And darn, you find the same model laptop screen is nowhere in the market. So you're stuck.
With IoC: You have a desktop computer and you accidentally break the screen. You find you can just grab almost any desktop monitor from the market, and it works well with your desktop.
Your desktop successfully implements IoC in this case. It accepts a variety type of monitors, while the laptop does not, it needs a specific screen to get fixed.
Inversion of Control, (or IoC), is about getting freedom (You get married, you lost freedom and you are being controlled. You divorced, you have just implemented Inversion of Control. That's what we called, "decoupled". Good computer system discourages some very close relationship.) more flexibility (The kitchen in your office only serves clean tap water, that is your only choice when you want to drink. Your boss implemented Inversion of Control by setting up a new coffee machine. Now you get the flexibility of choosing either tap water or coffee.) and less dependency (Your partner has a job, you don't have a job, you financially depend on your partner, so you are controlled. You find a job, you have implemented Inversion of Control. Good computer system encourages in-dependency.)
When you use a desktop computer, you have slaved (or say, controlled). You have to sit before a screen and look at it. Using the keyboard to type and using the mouse to navigate. And a badly written software can slave you even more. If you replace your desktop with a laptop, then you somewhat inverted control. You can easily take it and move around. So now you can control where you are with your computer, instead of your computer controlling it.
By implementing Inversion of Control, a software/object consumer gets more controls/options over the software/objects, instead of being controlled or having fewer options.
With the above ideas in mind. We still miss a key part of IoC. In the scenario of IoC, the software/object consumer is a sophisticated framework. That means the code you created is not called by yourself. Now let's explain why this way works better for a web application.
Suppose your code is a group of workers. They need to build a car. These workers need a place and tools (a software framework) to build the car. A traditional software framework will be like a garage with many tools. So the workers need to make a plan themselves and use the tools to build the car. Building a car is not an easy business, it will be really hard for the workers to plan and cooperate properly. A modern software framework will be like a modern car factory with all the facilities and managers in place. The workers do not have to make any plan, the managers (part of the framework, they are the smartest people and made the most sophisticated plan) will help coordinate so that the workers know when to do their job (framework calls your code). The workers just need to be flexible enough to use any tools the managers give to them (by using Dependency Injection).
Although the workers give the control of managing the project on the top level to the managers (the framework). But it is good to have some professionals help out. This is the concept of IoC truly come from.
Modern Web applications with an MVC architecture depends on the framework to do URL Routing and put Controllers in place for the framework to call.
Dependency Injection and Inversion of Control are related. Dependency Injection is at the micro level and Inversion of Control is at the macro level. You have to eat every bite (implement DI) in order to finish a meal (implement IoC).
Before using Inversion of Control you should be well aware of the fact that it has its pros and cons and you should know why you use it if you do so.
Pros:
Your code gets decoupled so you can easily exchange implementations of an interface with alternative implementations
It is a strong motivator for coding against interfaces instead of implementations
It's very easy to write unit tests for your code because it depends on nothing else than the objects it accepts in its constructor/setters and you can easily initialize them with the right objects in isolation.
Cons:
IoC not only inverts the control flow in your program, it also clouds it considerably. This means you can no longer just read your code and jump from one place to another because the connections that would normally be in your code are not in the code anymore. Instead it is in XML configuration files or annotations and in the code of your IoC container that interprets these metadata.
There arises a new class of bugs where you get your XML config or your annotations wrong and you can spend a lot of time finding out why your IoC container injects a null reference into one of your objects under certain conditions.
Personally I see the strong points of IoC and I really like them but I tend to avoid IoC whenever possible because it turns your software into a collection of classes that no longer constitute a "real" program but just something that needs to be put together by XML configuration or annotation metadata and would fall (and falls) apart without it.
Wikipedia Article. To me, inversion of control is turning your sequentially written code and turning it into an delegation structure. Instead of your program explicitly controlling everything, your program sets up a class or library with certain functions to be called when certain things happen.
It solves code duplication. For example, in the old days you would manually write your own event loop, polling the system libraries for new events. Nowadays, most modern APIs you simply tell the system libraries what events you're interested in, and it will let you know when they happen.
Inversion of control is a practical way to reduce code duplication, and if you find yourself copying an entire method and only changing a small piece of the code, you can consider tackling it with inversion of control. Inversion of control is made easy in many languages through the concept of delegates, interfaces, or even raw function pointers.
It is not appropriate to use in all cases, because the flow of a program can be harder to follow when written this way. It's a useful way to design methods when writing a library that will be reused, but it should be used sparingly in the core of your own program unless it really solves a code duplication problem.
Suppose you are an object. And you go to a restaurant:
Without IoC: you ask for "apple", and you are always served apple when you ask more.
With IoC: You can ask for "fruit". You can get different fruits each time you get served. for example, apple, orange, or water melon.
So, obviously, IoC is preferred when you like the varieties.
Answering only the first part.
What is it?
Inversion of Control (IoC) means to create instances of dependencies first and latter instance of a class (optionally injecting them through constructor), instead of creating an instance of the class first and then the class instance creating instances of dependencies.
Thus, inversion of control inverts the flow of control of the program. Instead of the callee controlling the flow of control (while creating dependencies), the caller controls the flow of control of the program.
But I think you have to be very careful with it. If you will overuse this pattern, you will make very complicated design and even more complicated code.
Like in this example with TextEditor: if you have only one SpellChecker maybe it is not really necessary to use IoC ? Unless you need to write unit tests or something ...
Anyway: be reasonable. Design pattern are good practices but not Bible to be preached. Do not stick it everywhere.
IoC / DI to me is pushing out dependencies to the calling objects. Super simple.
The non-techy answer is being able to swap out an engine in a car right before you turn it on. If everything hooks up right (the interface), you are good.
Inversion of control is a pattern used for decoupling components and layers in the system. The pattern is implemented through injecting dependencies into a component when it is constructed. These dependences are usually provided as interfaces for further decoupling and to support testability. IoC / DI containers such as Castle Windsor, Unity are tools (libraries) which can be used for providing IoC. These tools provide extended features above and beyond simple dependency management, including lifetime, AOP / Interception, policy, etc.
a. Alleviates a component from being responsible for managing it's dependencies.
b. Provides the ability to swap dependency implementations in different environments.
c. Allows a component be tested through mocking of dependencies.
d. Provides a mechanism for sharing resources throughout an application.
a. Critical when doing test-driven development. Without IoC it can be difficult to test, because the components under test are highly coupled to the rest of the system.
b. Critical when developing modular systems. A modular system is a system whose components can be replaced without requiring recompilation.
c. Critical if there are many cross-cutting concerns which need to addressed, partilarly in an enterprise application.
Let's say that we have a meeting in a hotel.
We have invited many people, so we have left out many jugs of water and many plastic cups.
When somebody wants to drink, he/she fills a cup, drinks the water and throws the cup on the floor.
After an hour or so we have a floor covered with plastic cups and water.
Let's try that after inverting the control:
Imagine the same meeting in the same place, but instead of plastic cups we now have a waiter with just one glass cup (Singleton)
When somebody wants to drink, the waiter gets one for them. They drink it and return it to the waiter.
Leaving aside the question of the hygiene, the use of a waiter (process control) is much more effective and economic.
And this is exactly what Spring (another IoC container, for example: Guice) does. Instead of letting the application create what it needs using the new keyword (i.e. taking a plastic cup), Spring IoC offers the application the same cup/ instance (singleton) of the needed object (glass of water).
Think of yourself as an organizer of such a meeting:
Example:-
public class MeetingMember {
private GlassOfWater glassOfWater;
...
public void setGlassOfWater(GlassOfWater glassOfWater){
this.glassOfWater = glassOfWater;
}
//your glassOfWater object initialized and ready to use...
//spring IoC called setGlassOfWater method itself in order to
//offer to meetingMember glassOfWater instance
}
Useful links:-
http://adfjsf.blogspot.in/2008/05/inversion-of-control.html
http://martinfowler.com/articles/injection.html
http://www.shawn-barrett.com/blog/post/Tip-of-the-day-e28093-Inversion-Of-Control.aspx
I shall write down my simple understanding of this two terms:
For quick understanding just read examples*
Dependency Injection(DI):
Dependency injection generally means passing an object on which method depends, as a parameter to a method, rather than having the method create the dependent object. What it means in practice is that the method does not depends directly on a particular implementation; any implementation that meets the requirements can be passed as a parameter.
With this objects tell thier dependencies.
And spring makes it available. This leads to loosely coupled application development.
Quick Example:EMPLOYEE OBJECT WHEN CREATED,
IT WILL AUTOMATICALLY CREATE ADDRESS OBJECT
(if address is defines as dependency by Employee object)
Inversion of Control(IoC) Container:
This is common characteristic of frameworks,
IOC manages java objects – from instantiation to destruction through its BeanFactory. -Java components that are instantiated by the IoC container are called beans, and the IoC container manages a bean's scope, lifecycle events, and any AOP features for which it has been configured and coded.
QUICK EXAMPLE:Inversion of Control is about getting freedom, more flexibility, and less dependency. When you are using a desktop computer, you are slaved (or say, controlled). You have to sit before a screen and look at it. Using keyboard to type and using mouse to navigate. And a bad written software can slave you even more. If you replaced your desktop with a laptop, then you somewhat inverted control. You can easily take it and move around. So now you can control where you are with your computer, instead of computer controlling it.
By implementing Inversion of Control, a software/object consumer get more controls/options over the software/objects, instead of being controlled or having less options.
Inversion of control as a design guideline serves the following purposes:
There is a decoupling of the execution of a certain task from implementation.
Every module can focus on what it is designed for.
Modules make no assumptions about what other systems do but rely on their contracts.
Replacing modules has no side effect on other modules I will keep things abstract here, You can visit following links for detail understanding of the topic.
A good read with example
Detailed explanation
I found a very clear example here which explains how the 'control is inverted'.
Classic code (without Dependency injection)
Here is how a code not using DI will roughly work:
Application needs Foo (e.g. a controller), so:
Application creates Foo
Application calls Foo
Foo needs Bar (e.g. a service), so:
Foo creates Bar
Foo calls Bar
Bar needs Bim (a service, a repository, …), so:
Bar creates Bim
Bar does something
Using dependency injection
Here is how a code using DI will roughly work:
Application needs Foo, which needs Bar, which needs Bim, so:
Application creates Bim
Application creates Bar and gives it Bim
Application creates Foo and gives it Bar
Application calls Foo
Foo calls Bar
Bar does something
The control of the dependencies is inverted from one being called to the one calling.
What problems does it solve?
Dependency injection makes it easy to swap with the different implementation of the injected classes. While unit testing you can inject a dummy implementation, which makes the testing a lot easier.
Ex: Suppose your application stores the user uploaded file in the Google Drive, with DI your controller code may look like this:
class SomeController
{
private $storage;
function __construct(StorageServiceInterface $storage)
{
$this->storage = $storage;
}
public function myFunction ()
{
return $this->storage->getFile($fileName);
}
}
class GoogleDriveService implements StorageServiceInterface
{
public function authenticate($user) {}
public function putFile($file) {}
public function getFile($file) {}
}
When your requirements change say, instead of GoogleDrive you are asked to use the Dropbox. You only need to write a dropbox implementation for the StorageServiceInterface. You don't have make any changes in the controller as long as Dropbox implementation adheres to the StorageServiceInterface.
While testing you can create the mock for the StorageServiceInterface with the dummy implementation where all the methods return null(or any predefined value as per your testing requirement).
Instead if you had the controller class to construct the storage object with the new keyword like this:
class SomeController
{
private $storage;
function __construct()
{
$this->storage = new GoogleDriveService();
}
public function myFunction ()
{
return $this->storage->getFile($fileName);
}
}
When you want to change with the Dropbox implementation you have to replace all the lines where new GoogleDriveService object is constructed and use the DropboxService. Besides when testing the SomeController class the constructor always expects the GoogleDriveService class and the actual methods of this class are triggered.
When is it appropriate and when not?
In my opinion you use DI when you think there are (or there can be) alternative implementations of a class.
I agree with NilObject, but I'd like to add to this:
if you find yourself copying an entire method and only changing a small piece of the code, you can consider tackling it with inversion of control
If you find yourself copying and pasting code around, you're almost always doing something wrong. Codified as the design principle Once and Only Once.
For example, task#1 is to create object.
Without IOC concept, task#1 is supposed to be done by Programmer.But With IOC concept, task#1 would be done by container.
In short Control gets inverted from Programmer to container. So, it is called as inversion of control.
I found one good example here.
It seems that the most confusing thing about "IoC" the acronym and the name for which it stands is that it's too glamorous of a name - almost a noise name.
Do we really need a name by which to describe the difference between procedural and event driven programming? OK, if we need to, but do we need to pick a brand new "bigger than life" name that confuses more than it solves?
Inversion of control is when you go to the grocery store and your wife gives you the list of products to buy.
In programming terms, she passed a callback function getProductList() to the function you are executing - doShopping().
It allows user of the function to define some parts of it, making it more flexible.
I understand that the answer has already been given here. But I still think, some basics about the inversion of control have to be discussed here in length for future readers.
Inversion of Control (IoC) has been built on a very simple principle called Hollywood Principle. And it says that,
Don't call us, we'll call you
What it means is that don't go to the Hollywood to fulfill your dream rather if you are worthy then Hollywood will find you and make your dream comes true. Pretty much inverted, huh?
Now when we discuss about the principle of IoC, we use to forget about the Hollywood. For IoC, there has to be three element, a Hollywood, you and a task like to fulfill your dream.
In our programming world, Hollywood represent a generic framework (may be written by you or someone else), you represent the user code you wrote and the task represent the thing you want to accomplish with your code. Now you don't ever go to trigger your task by yourself, not in IoC! Rather you have designed everything in such that your framework will trigger your task for you. Thus you have built a reusable framework which can make someone a hero or another one a villain. But that framework is always in charge, it knows when to pick someone and that someone only knows what it wants to be.
A real life example would be given here. Suppose, you want to develop a web application. So, you create a framework which will handle all the common things a web application should handle like handling http request, creating application menu, serving pages, managing cookies, triggering events etc.
And then you leave some hooks in your framework where you can put further codes to generate custom menu, pages, cookies or logging some user events etc. On every browser request, your framework will run and executes your custom codes if hooked then serve it back to the browser.
So, the idea is pretty much simple. Rather than creating a user application which will control everything, first you create a reusable framework which will control everything then write your custom codes and hook it to the framework to execute those in time.
Laravel and EJB are examples of such a frameworks.
Reference:
https://martinfowler.com/bliki/InversionOfControl.html
https://en.wikipedia.org/wiki/Inversion_of_control
Inversion of Control is a generic principle, while Dependency Injection realises this principle as a design pattern for object graph construction (i.e. configuration controls how the objects are referencing each other, rather than the object itself controlling how to get the reference to another object).
Looking at Inversion of Control as a design pattern, we need to look at what we are inverting. Dependency Injection inverts control of constructing a graph of objects. If told in layman's term, inversion of control implies change in flow of control in the program. Eg. In traditional standalone app, we have main method, from where the control gets passed to other third party libraries(in case, we have used third party library's function), but through inversion of control control gets transferred from third party library code to our code, as we are taking the service of third party library. But there are other aspects that need to be inverted within a program - e.g. invocation of methods and threads to execute the code.
For those interested in more depth on Inversion of Control a paper has been published outlining a more complete picture of Inversion of Control as a design pattern (OfficeFloor: using office patterns to improve software design http://doi.acm.org/10.1145/2739011.2739013 with a free copy available to download from http://www.officefloor.net/about.html).
What is identified is the following relationship:
Inversion of Control (for methods) = Dependency (state) Injection + Continuation Injection + Thread Injection
Summary of above relationship for Inversion of Control available - http://dzone.com/articles/inversion-of-coupling-control
IoC is about inverting the relationship between your code and third-party code (library/framework):
In normal s/w development, you write the main() method and call "library" methods. You are in control :)
In IoC the "framework" controls main() and calls your methods. The Framework is in control :(
DI (Dependency Injection) is about how the control flows in the application. Traditional desktop application had control flow from your application(main() method) to other library method calls, but with DI control flow is inverted that's framework takes care of starting your app, initializing it and invoking your methods whenever required.
In the end you always win :)
I like this explanation: http://joelabrahamsson.com/inversion-of-control-an-introduction-with-examples-in-net/
It start simple and shows code examples as well.
The consumer, X, needs the consumed class, Y, to accomplish something. That’s all good and natural, but does X really need to know that it uses Y?
Isn’t it enough that X knows that it uses something that has the behavior, the methods, properties etc, of Y without knowing who actually implements the behavior?
By extracting an abstract definition of the behavior used by X in Y, illustrated as I below, and letting the consumer X use an instance of that instead of Y it can continue to do what it does without having to know the specifics about Y.
In the illustration above Y implements I and X uses an instance of I. While it’s quite possible that X still uses Y what’s interesting is that X doesn’t know that. It just knows that it uses something that implements I.
Read article for further info and description of benefits such as:
X is not dependent on Y anymore
More flexible, implementation can be decided in runtime
Isolation of code unit, easier testing
...
A very simple written explanation can be found here
http://binstock.blogspot.in/2008/01/excellent-explanation-of-dependency.html
It says -
"Any nontrivial application is made up of two or more classes that
collaborate with each other to perform some business logic.
Traditionally, each object is responsible for obtaining its own
references to the objects it collaborates with (its dependencies).
When applying DI, the objects are given their dependencies at creation
time by some external entity that coordinates each object in the
system. In other words, dependencies are injected into objects."
Programming speaking
IoC in easy terms: It's the use of Interface as a way of specific something (such a field or a parameter) as a wildcard that can be used by some classes. It allows the re-usability of the code.
For example, let's say that we have two classes : Dog and Cat. Both shares the same qualities/states: age, size, weight. So instead of creating a class of service called DogService and CatService, I can create a single one called AnimalService that allows to use Dog and Cat only if they use the interface IAnimal.
However, pragmatically speaking, it has some backwards.
a) Most of the developers don't know how to use it. For example, I can create a class called Customer and I can create automatically (using the tools of the IDE) an interface called ICustomer. So, it's not rare to find a folder filled with classes and interfaces, no matter if the interfaces will be reused or not. It's called BLOATED. Some people could argue that "may be in the future we could use it". :-|
b) It has some limitings. For example, let's talk about the case of Dog and Cat and I want to add a new service (functionality) only for dogs. Let's say that I want to calculate the number of days that I need to train a dog (trainDays()), for cat it's useless, cats can't be trained (I'm joking).
b.1) If I add trainDays() to the Service AnimalService then it also works with cats and it's not valid at all.
b.2) I can add a condition in trainDays() where it evaluates which class is used. But it will break completely the IoC.
b.3) I can create a new class of service called DogService just for the new functionality. But, it will increase the maintainability of the code because we will have two classes of service (with similar functionality) for Dog and it's bad.
Inversion of control is about transferring control from library to the client. It makes more sense when we talk about a client that injects (passes) a function value (lambda expression) into a higher order function (library function) that controls (changes) the behavior of the library function.
So, a simple implementation (with huge implications) of this pattern is a higher order library function (which accepts another function as an argument). The library function transfers control over its behavior by giving the client the ability to supply the "control" function as an argument.
For example, library functions like "map", "flatMap" are IoC implementations.
Of course, a limited IoC version is, for example, a boolean function parameter. A client may control the library function by switching the boolean argument.
A client or framework that injects library dependencies (which carry behavior) into libraries may also be considered IoC
I've read a lot of answers for this but if someone is still confused and needs a plus ultra "laymans term" to explain IoC here is my take:
Imagine a parent and child talking to each other.
Without IoC:
*Parent: You can only speak when I ask you questions and you can only act when I give you permission.
Parent: This means, you can't ask me if you can eat, play, go to the bathroom or even sleep if I don't ask you.
Parent: Do you want to eat?
Child: No.
Parent: Okay, I'll be back. Wait for me.
Child: (Wants to play but since there's no question from the parent, the child can't do anything).
After 1 hour...
Parent: I'm back. Do you want to play?
Child: Yes.
Parent: Permission granted.
Child: (finally is able to play).
This simple scenario explains the control is centered to the parent. The child's freedom is restricted and highly depends on the parent's question. The child can ONLY speak when asked to speak, and can ONLY act when granted permission.
With IoC:
The child has now the ability to ask questions and the parent can respond with answers and permissions. Simply means the control is inverted!
The child is now free to ask questions anytime and though there is still dependency with the parent regarding permissions, he is not dependent in the means of speaking/asking questions.
In a technological way of explaining, this is very similar to console/shell/cmd vs GUI interaction. (Which is answer of Mark Harrison above no.2 top answer).
In console, you are dependent on the what is being asked/displayed to you and you can't jump to other menus and features without answering it's question first; following a strict sequential flow. (programmatically this is like a method/function loop).
However with GUI, the menus and features are laid out and the user can select whatever it needs thus having more control and being less restricted. (programmatically, menus have callback when selected and an action takes place).
Since already there are many answers for the question but none of them shows the breakdown of Inversion Control term I see an opportunity to give a more concise and useful answer.
Inversion of Control is a pattern that implements the Dependency Inversion Principle (DIP). DIP states the following: 1. High-level modules should not depend on low-level modules. Both should depend on abstractions (e.g. interfaces). 2. Abstractions should not depend on details. Details (concrete implementations) should depend on abstractions.
There are three types of Inversion of Control:
Interface Inversion
Providers shouldn’t define an interface. Instead, the consumer should define the interface and providers must implement it. Interface Inversion allows eliminating the necessity to modify the consumer each time when a new provider added.
Flow Inversion
Changes control of the flow. For example, you have a console application where you asked to enter many parameters and after each entered parameter you are forced to press Enter. You can apply Flow Inversion here and implement a desktop application where the user can choose the sequence of parameters’ entering, the user can edit parameters, and at the final step, the user needs to press Enter only once.
Creation Inversion
It can be implemented by the following patterns: Factory Pattern, Service Locator, and Dependency Injection. Creation Inversion helps to eliminate dependencies between types moving the process of dependency objects creation outside of the type that uses these dependency objects. Why dependencies are bad? Here are a couple of examples: direct creation of a new object in your code makes testing harder; it is impossible to change references in assemblies without recompilation (OCP principle violation); you can’t easily replace a desktop-UI by a web-UI.
Creating an object within class is called tight coupling, Spring removes this dependency by following a design pattern(DI/IOC). In which object of class in passed in constructor rather than creating in class. More over we give super class reference variable in constructor to define more general structure.
Using IoC you are not new'ing up your objects. Your IoC container will do that and manage the lifetime of them.
It solves the problem of having to manually change every instantiation of one type of object to another.
It is appropriate when you have functionality that may change in the future or that may be different depending on the environment or configuration used in.