How to Derive Amplitude of Capillary Wave from Energy and Surface Tension - fluid

I am looking to derive a function which can return an amplitude for a given frequency, for a capillary wave of fixed energy E and surface tension sigma. However, every expression I can find simply relates frequency and wave velocity. What am I missing?

Related

How to count peaks on chart in LabVIEW above some specific value. How to count amount of hills (Heart Rate Monitor)

I want to create some simple heart rate monitor in LabVIEW.
I have sensor which gives me heart workflow (upper graph): Waveform
On second graph (lower graph) is amount of hills (0 - valley, 1 - hill) and that hills are heart beats (that is voltage waveform). From this I want to get amount of those hills, then multiply this number by 6 and I'll get heart rate per minute.
Measuring card I use: NI USB-6009.
Any idea how to do that?
I can sent a VI file if anyone will be able to help me.
You could use Threshold Peak Detector VI
This VI does not identify the locations or the amplitudes of peaks
with great accuracy, but the VI does give an idea of where and how
often a signal crosses above a certain threshold value.
You could also use Waveform Peak Detection VI
The Waveform Peak Detection VI operates like the array-based Peak
Detector VI. The difference is that this VI's input is a waveform data
type, and the VI has error cluster input and output terminals.
Locations displays the output array of the peaks or valleys, which is
still in terms of the indices of the input waveform. For example, if
one element of Locations is 100, that means that there is a peak or
valley located at index 100 in the data array of the input waveform.
Figure 6 shows you a method for determining the times at which peaks
or valleys occur.
NI have a great tutorial that should answer all your questions, it can be found here:
I had some fun recreating some of your exercise here. I simulated a squarewave. In my sample of the square wave, I know how many samples I have and the sampling frequency. As a result, I calculate how much time my data sample represents. I then count the number of positive edges in the sample. I do some division to calculate beats/second and multiplication for beats/minute. The sampling frequency, Fs, and number of samples, N or #s are required to calculate your beats per minute metric. Their uses are shown below.
The contrived VI
Does that lead you to a solution for your application?

Adapting Smartphone Camera to derive Blackbody temperature

At first blush this presumably means -
(1) looking only at lower IR frequencies,
(2) select a IR frequency cut-off for low frequency buckets of the u/v FFT grid
(3) Once we have that, derive the power distribution - squares of amplitudes - for that IR range of frequency buckets the camera supports.
(4) Fit that distribution against the Rayleigh-Jones classical Black Box radiation formula:
(https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Jeans_law#Other_forms_of_Rayleigh%E2%80%93Jeans_law)
(5) Assign a Temperature of 'best fit'.
The units for B(ν,T) are Power per unit frequency per unit surface area at equilibrium Temperature
Of course, this leaves many details out, such as (6) cancelling background, etc, but one could perhaps use the opposite facing camera to assist in that. Where buckets do not straddle the temperature of interest, (7) use a one-sided distribution to derive an inferred Gaussian curve to fit the Rayleigh-Jeans curve at that derived central frequency ν, for measured temperature T.
Finally (8) check if this procedure can consistently detect a high vs low surface temperature (9) check if it can consistently identify a 'fever' temperature (say, 101 Fahrenheit / 38 Celcius) pointing at a forehead.
If all that can be done, (10) Voila! a body fever detector
So those who are capable can fill us in on whether this is possible to do so for eventual posting at an app store as a free Covid19 safe body temperature app? I have a strong sense there's quite a few out there who can verify this in a week or two!
It appears that the analog signal assumed in (1) and (2) are not available in the Android digital Camera2 interface.
Android RAW image stream, that is uncompressed YUV, is already encoded Y green monochrome, and U,V are blue and red shifts from zero for converting green monochrome to color.
The original analog frequency / energy signal is not immediately accessible. So adaptation is not possible (yet).

Path mapping using VectorNav VN100 IMU to map a route between two GPS coordinates

I'm trying to use a VectorNav VN100 IMU to map a path through an underground tunnel (GPS denied environment) and am wondering what is the best approach to take to do this.
I get lots of data points from the VN100 these include: orientation/pose (Euler angles, quaternions), and acceleration and gyroscope values in three dimensions. The acceleration and gyro values are given in raw and filtered formats where filtered outputs have been filtered using an onboard Kalman filter.
In addition to IMU measurements I also measure GPS-RTK coordinates in three dimensions at the start and end-points of the tunnel.
How should I approach this mapping problem? I'm quite new to this area and do not know how to extract position from the acceleration and orientation data. I know acceleration can be integrated once to give velocity and that in turn can be integrated again to get position but how do I combine this data together with orientation data (quaternions) to get the path?
In robotics, Mapping means representing the environment using perception sensor (like 2D,3D laser or Cameras).
Once you got the map, it can be used by robot to know its location(Localization). Map is also used for find a path between locations to move from one place to another place(Path planning).
In your case you need a perception sensor to get the better location estimation. With only IMU you can track the position using Extended Kalman filter(EKF) but it drifts quickly.
Robot Operating System has EKF implementation you can refer it.
Ok so I came across a solution that gets me somewhat closer to my goal of finding the path travelled underground, although it is by no means the final solution I'm posting my algorithm here in the hopes that it helps someone else.
My method is as follows:
Rotate the Acceleration vector A = [Ax, Ay, Az] output by the VectorNav VN100 into the North, East, Down frame by multiplying by the quaternion VectorNav output Q = [q0, q1, q2, q3]. How to multiply a vector by a quaternion is outlined in this other post.
Basically you take the acceleration vector and add a fourth component on to the end of it to act as the scalar term, then multiply by the quaternion and it's conjugate (N.B. the scalar terms in both matrices should be in the same position, in this case the scalar quaternion term is the first term, so therefore a zero scalar term should be added on to the start of the acceleration vector) e.g. A = [0,Ax,Ay,Az]. Then perform the following multiplication:
A_ned = Q A Q*
where Q* is the complex conjugate of the quaternion (i, j, and k terms are negated).
Integrate the rotated acceleration vector to get the velocity vector: V_ned
Integrate the Velocity vector to get the position in north, east, down: R_ned
There is substantial drift in the velocity and position due to sensor bias which causes drift. This can be corrected for somewhat if we know the start and end velocity and start and end positions. In this case the start and end velocities were zero so I used this to correct the drift in the velocity vector.
Uncorrected Velocity
Corrected Velocity
My final comparison between IMU position vs GPS is shown here (read: there's still a long way to go).
GPS-RTK data vs VectorNav IMU data
Now I just need to come up with a sensor fusion algorithm to try to improve the position estimation...

Cosine factor in directional hemispherical reflectance

Directional hemispherical reflectance is the ratio between exitance to incoming irradiance. It is used to estimate degree of energy conservation
R(l) = exitance / irradiance
I can understand the relation between BRDF and R(l). BRDF is target to specific viewing angle. so the numerator is radiance. R(l) can be obtain by integrating brdf over all viewing direction.
R(l) = integral(brdf(l, v) * cos(theta0) * dw0)
theta0 is angle between n and v
My question is where do the cosine factor come from?
The angle theta0 should be the angle between incident light and surface normal. The closer incident light flux comes to surface normal, the greater energy surface receives (this is the case for cos(theta0) = 1).
The formula itself comes from the derivation of BRDF.
The directional hemispherical reflectance is the albedo of a surface which is being illuminated by a single, directional light source. This means that there is only a single direction for which there is illumination reaching the surface.
Since the lighting term is a delta function, the dimensionality of the integral is reduced and we only have to integrate over the viewing directions. The cosine term projects the differential solid angle of the light onto the surface
So it's basically a stripped down version of the rendering equation using the simplified light source.

sampling 2-dimensional surface: how many sample points along X & Y axes?

I have a set of first 25 Zernike polynomials. Below are shown few in Cartesin co-ordinate system.
z2 = 2*x
z3 = 2*y
z4 = sqrt(3)*(2*x^2+2*y^2-1)
:
:
z24 = sqrt(14)*(15*(x^2+y^2)^2-20*(x^2+y^2)+6)*(x^2-y^2)
I am not using 1st since it is piston; so I have these 24 two-dim ANALYTICAL functions expressed in X-Y Cartesian co-ordinate system. All are defined over unit circle, as they are orthogonal over unit circle. The problem which I am describing here is relevant to other 2D surfaces also apart from Zernike Polynomials.
Suppose that origin (0,0) of the XY co-ordinate system and the centre of the unit circle are same.
Next, I take linear combination of these 24 polynomials to build a 2D wavefront shape. I use 24 random input coefficients in this combination.
w(x,y) = sum_over_i a_i*z_i (i=2,3,4,....24)
a_i = random coefficients
z_i = zernike polynomials
Upto this point, everything is analytical part which can be done on paper.
Now comes the discretization!
I know that when you want to re-construct a signal (1Dim/2Dim), your sampling frequency should be at least twice the maximum frequency present in the signal (Nyquist-Shanon principle).
Here signal is w(x,y) as mentioned above which is nothing but a simple 2Dim
function of x & y. I want to represent it on computer now. Obviously I can not take all infinite points from -1 to +1 along x axis and same for y axis.
I have to take finite no. of data points (which are called sample points or just samples) on this analytical 2Dim surface w(x,y)
I am measuring x & y in metres, and -1 <= x <= +1; -1 <= y <= +1.
e.g. If I divide my x-axis from -1 to 1, in 50 sample points then dx = 2/50= 0.04 metre. Same for y axis. Now my sampling frequency is 1/dx i.e. 25 samples per metre. Same for y axis.
But I took 50 samples arbitrarily; I could have taken 10 samples or 1000 samples. That is the crux of the matter here: how many samples points?How will I determine this number?
There is one theorem (Nyquist-Shanon theorem) mentioned above which says that if I want to re-construct w(x,y) faithfully, I must sample it on both axes so that my sampling frequency (i.e. no. of samples per metre) is at least twice the maximum frequency present in the w(x,y). This is nothing but finding power spectrum of w(x,y). Idea is that any function in space domain can be represented in spatial-frequency domain also, which is nothing but taking Fourier transform of the function! This tells us how many (spatial) frequencies are present in your function w(x,y) and what is the maximum frequency out of these many frequencies.
Now my question is first how to find out this maximum sampling frequency in my case. I can not use MATLAB fft2() or any other tool since it means already I have samples taken across the wavefront!! Obviously remaining option is find it analytically ! But that is time consuming and difficult since I have 24 polynomials & I will have to use then continuous Fourier transform i.e. I will have to go for pen and paper.
Any help will be appreciated.
Thanks
Key Assumptions
You want to use the "Nyquist-Shanon" theorem to determine sampling frequency
Obviously remaining option is find it analytically ! But that is time
consuming and difficult since I have 21 polynomials & I have to use
continuous Fourier transform i.e. done by analytically.
Given the assumption I have made (and noting that consideration of other mathematical techniques is out of scope for StackOverflow), you have no option but to calculate the continuous Fourier Transform.
However, I believe you haven't considered all the options for calculating the transform other than a laborious paper exercise e.g.
Numerical approximation of the continuous F.T. using code
Symbolic Integration e.g. Wolfram Alpha
Surely a numerical approximation of the Fourier Transform will be adequate for your solution?
I am assuming this is for coursework or research rather, so all you really care about as a physicist is a solution that is the quickest solution that is accurate within the scope of your problem.
So to conclude, IMHO, don't waste time searching for a more mathematically elegant solution or trick and just solve the problem with one of the above methods