How to have only one LaunchedEffect runnin in Kotlin/Compose - kotlin

I have a cookie clicker rip off app about beans in Kotlin and Compose. I have a LaunchedEffect running a timer that updates the amount of beans every second. The only problem is that I never stop the LaunchedEffect timer, so every time I execute the code, it creates another one leading to many timers adding many beans. A code snippet is below showing the code I am talking about.
if (showHome) {
val updateAmount by remember { mutableStateOf((greenBeans) + (10 * kidneyBeans) + (100 * coffeeBeans) + (1000 * pintoBeans) + (10000 * chocolateBeans) + (100000 * jellyBeans))}
LaunchedEffect(key1 = true) {
updateBeans {
beans += updateAmount
}
}
}
Is there a way to prevent this problem from occurring?

The LaunchedEffect itself is a composable, so every time the LaunchedEffect leave your compose scope, change screen, or etc. It will got cancelled.
Simple example is your code, when the showHome is set to false, then the LaunchedEffect leave composition and got destroyed. It will only started again when the showHome is set to true

The thing with your code is your conditional code block enters recomposition when showHome is true and creates a new LaunchedEffect and updateAmount
if (showHome) {
// Anything here is recomposed when it toggle
}
Anything inside this block enters composition if showHome is true initially and on every recomposition updateAmount changes from false to true. You might want to move updateAmount outside of if block for starters.
If you don't want to trigger a timer every time showHome is true
you might have it something Like
LaunchedEffect(key1 = true) {
if (showHome) {
updateBeans {
beans += updateAmount
}
}
}
With the snippet above LaunchedEffect will be launched once but update only when showHome is true.
If you want to reset timer every time you set showHome true you can use it as
LaunchedEffect(key1 = showHome) {
if (showHome) {
updateBeans {
beans += updateAmount
}
}
}

Related

How to change the Default value of a variable after some time?

Is it possible in KOTLIN or by remember in Jetpack Compose to change the value of a variable after some seconds?
For example, I have a variable var currentResult1 = remember { mutableStateOf(true) }.
How can I say that after my activity opens, this currentResult1.value change to false after 1 second?
Yes, you can change value of any MutableState value using LaunchedEffect or coroutineScope builder functions.
LaunchedEffect(Unit) {
delay(1000)
currentResult1.value = false
}
You can check out this answer how to use it for a timer that changes current value every second.

How to i chain two parts of an animation together in jetpack compose so the the offset increases then decreases?

Ive recently got into doing animations using jet pack compose and am wondering how you can make it so that when you increase a value in an offset, once the animation reaches that value it then changes the value to another value. So like update transition but instead of at the same time, one after the other.
Actually #RaBaKa's answer is partially correct, but it's missing information about how the animation should be run.
It should be done as a side effect. For example, you can use LaunchedEffect: it is already running in a coroutine scope. It is perfectly normal to run one animation after another - as soon as the first suspend function finishes, the second will be started:
val value = remember { Animatable(0f) }
LaunchedEffect(Unit) {
value.animateTo(
20f,
animationSpec = tween(2000),
)
value.animateTo(
10f,
animationSpec = tween(2000),
)
}
Text(value.value.toString())
If you want to do this in response to some action, such as pressing a button, you need to run the coroutine yourself. The main thing is to run the animations in the same coroutine so that they are chained.
val value = remember { Animatable(0f) }
val scope = rememberCoroutineScope()
Button(onClick = {
scope.launch {
value.animateTo(
20f,
animationSpec = tween(2000),
)
value.animateTo(
10f,
animationSpec = tween(2000),
)
}
}) {
}
Text(value.value.toString())
The correct answer is to use Kotlin coroutines. I managed to get it working fine. You have to use coroutines in order to launch the animations in the correct sequence like this:
animationRoutine.launch {
coroutineScope {
launch {
animate(
startingValue,
targetValue,
animationSpec = whatYouWant,
block = { value, _ -> whateverYouNeed = value }
)
}
launch {
animate(
initialValue,
targetValue,
animationSpec = whatYouWant,
block = { value, _ -> whateverYouNeed = value }
)
}
}
Each of launch scope launches everything in a non blocking way if you tell it to allowing you to run multiple animations at once at a lower level and to sequence the animations you add another coroutine for the next part of the animation.
Maybe you can use Animatable
val value = remember { Animatable(0f) } //Initial Value
Then in compose you can just use
value.animateTo(20f)
then
value.animateTo(10f)
For more information visit the official documentation

CoroutineScope cancel listener

I'm performing some work in a class that is using a Scope:
class MyClass(val scope: CoroutineScope) {
private val state: StateFlow<Int> = someFlow()
.shareIn(scope, started = SharingStared.Eagerly, initialValue = 0)
fun save() {
scope.launch {
save(state.value)
}
}
}
Now I want to clean up when the scope is cancelled. What is the best way to do this? I could come up with this, but that doesn't really sound stable.
init {
scope.launch {
try { delay(10000000000000) }
finally { withContext(Noncancellable) { save(state.value) } }
}
}
Edit: I've modified my snippet to more reflect what I'm doing. The state Flow updates several times per second, and when I invoke the save() method I want to save the state to disk (So I don't want to do this every time the state changes).
Next to that, I want to save the state when the scope is cancelled (i.e. at the very end). This is where I'm having trouble.
There is no such "onCancellation" mechanism on CoroutineScope to my knowledge.
In general, clean up can be "prepared" on the spot when executing the code that requires cleanup. For instance, using an input stream with use { ... } or closing resources with finally blocks.
This will be automatically honored on cancellation (or any other failures, btw), because cancellation of the scope simply generates CancellationExceptions inside running coroutines.
Now, sometimes (as in your case) you have more complex needs, and in that case I would say that the cancellation of the scope is just one thing that happens at the end of some kind of lifecycle, and you can do the cleanup you need at the same place where you cancel the scope.
If you really want to use a workaround like your current parallel coroutine, you can use awaitCancellation instead of a huge delay:
init {
scope.launch {
try { awaitCancellation() }
finally { withContext(Noncancellable) { save(state.value) } }
}
}
But I still don't find it very appealing tbh.
You can use a Exception handler
// Destroy service when completed or in case of an error.
val handler = CoroutineExceptionHandler { _, exception ->
Log.e("CoroutineExceptionHandler Error", exception.message!!)
stopSelf(startId)
}
Then you can use this Handler as
scope.launch(handler){
// do stuff
}
handler will be called only if an exception is thrown

Flow - pause/resume flow

In RxJava there is the valve operator that allows to pause (and buffer) a flow and resumes the flow again (and also emit the buffered values as soon as it's resumed). It's part of the rx java extensions (https://github.com/akarnokd/RxJavaExtensions/blob/3.x/src/main/java/hu/akarnokd/rxjava3/operators/FlowableValve.java).
Is there something like this for kotlin flows?
My use case is that I want to observe a flow inside an activity and never lose an event (like I would do it with LiveData e.g. which stops observing data if the activity is paused). So while the activity is paused I want the flow to buffer observed values until the activity is resumed and emit them all as soon as the activity is resumed.
So while the activity is created (until it is destroyed) I want to observe the flow BUT I only want to emit values while the activity is active and buffer the values while it is not active (but still created) until it gets active again.
Is there something to solve this or has anyone ever written something to solve this?
A combination of Lifecycle.launchWhenX and a SharedFlow should do the trick. Here's a simple example using a flow that emits a number every second.
// In your ViewModel
class MainViewModel : ViewModel() {
val numbers = flow {
var counter = 0
while (true) {
emit(counter++)
delay(1_000L)
}
}
.shareIn(
scope = viewModelScope,
started = SharingStarted.Lazily
)
}
// In your Fragment.onViewCreated()
viewLifecycleOwner.lifecycleScope.launchWhenStarted {
viewModel.numbers
.collect { number ->
Log.d("asdf", "number: $number")
}
}
This works because Lifecycle.launchWhenStarted pauses the coroutine when the Lifecycle enters a stopped state, rather than cancels it. When your Lifecycle comes back to a started state after pausing, it'll collect everything that happened while in the stopped state.
I know it is ugly solution but it works fine for me:
fun main() {
val flow = MutableSharedFlow<String>(extraBufferCapacity = 50, onBufferOverflow = BufferOverflow.DROP_OLDEST)
val isOpened = AtomicBoolean()
val startTime = System.currentTimeMillis()
GlobalScope.launch(Executors.newSingleThreadExecutor().asCoroutineDispatcher()) {
flow
.transform { value ->
while (isOpened.get().not()) { }
emit(value)
}
.collect {
println("${System.currentTimeMillis() - startTime}: $it")
}
}
Thread.sleep(1000)
flow.tryEmit("First")
Thread.sleep(1000)
isOpened.set(true)
flow.tryEmit("Second")
isOpened.set(false)
Thread.sleep(1000)
isOpened.set(true)
flow.tryEmit("Third")
Thread.sleep(2000)
}
Result:
So you can set isOpened to false when your activity lifecycle paused and to true when resumed.
You can use lifecycleScope.launchWhenStarted
https://developer.android.com/kotlin/flow/stateflow-and-sharedflow#stateflow

How delay function is working in Kotlin without blocking the current thread?

Past few days I am learning coroutines, most of thee concepts are clear but I don't understand the implementation of the delay function.
How delay function is resuming the coroutine after the delayed time? For a simple program, there is only one main thread, and to resume the coroutine after the delayed time I assume there should be another timer thread that handles all the delayed invocations and invokes them later. Is it true? Can someone explain the implementation detail of the delay function?
TL; DR;
When using runBlocking, delay is internally wrapped and runs on same thread and when using any other dispatcher it suspends and is resumed by resuming the continuation by event-loop thread. Check the long answer below to understand the internals.
Long answer:
#Francesc answer is pointing correctly but is somewhat abstract, and still does not explains how actually delay works internally.
So, as he pointed to the delay function:
public suspend fun delay(timeMillis: Long) {
if (timeMillis <= 0) return // don't delay
return suspendCancellableCoroutine sc# { cont: CancellableContinuation<Unit> ->
cont.context.delay.scheduleResumeAfterDelay(timeMillis, cont)
}
}
What it does is "Obtains the current continuation instance inside suspend functions and suspends the currently running coroutine after running the block inside the lambda"
So this line cont.context.delay.scheduleResumeAfterDelay(timeMillis, cont) is going to be executed and then the current coroutine gets suspended i.e. frees the current thread it was stick on.
cont.context.delay points to
internal val CoroutineContext.delay: Delay get() = get(ContinuationInterceptor) as? Delay ?: DefaultDelay
that says if ContinuationInterceptor is implementation of Delay then return that otherwise use DefaultDelay which is internal actual val DefaultDelay: Delay = DefaultExecutor a DefaultExecutor which is internal actual object DefaultExecutor : EventLoopImplBase(), Runnable {...} an implementation of EventLoop and has a thread of its own to run on.
Note: ContinuationInterceptor is an implementation of Delay when coroutine is in the runBlocking block in order to make sure the delay run on same thread otherwise it is not. Check this snippet to see the results.
Now I couldn't find implemenation of Delay created by runBlocking since internal expect fun createEventLoop(): EventLoop is an expect function which is implemented from outside, not by the source. But the DefaultDelay is implemented as follows
public override fun scheduleResumeAfterDelay(timeMillis: Long, continuation: CancellableContinuation<Unit>) {
val timeNanos = delayToNanos(timeMillis)
if (timeNanos < MAX_DELAY_NS) {
val now = nanoTime()
DelayedResumeTask(now + timeNanos, continuation).also { task ->
continuation.disposeOnCancellation(task)
schedule(now, task)
}
}
}
This is how scheduleResumeAfterDelay is implemented it creates a DelayedResumeTask with the continuation passed by delay, and then calls schedule(now, task) which calls scheduleImpl(now, delayedTask) which finally calls delayedTask.scheduleTask(now, delayedQueue, this) passing the delayedQueue in the object
#Synchronized
fun scheduleTask(now: Long, delayed: DelayedTaskQueue, eventLoop: EventLoopImplBase): Int {
if (_heap === kotlinx.coroutines.DISPOSED_TASK) return SCHEDULE_DISPOSED // don't add -- was already disposed
delayed.addLastIf(this) { firstTask ->
if (eventLoop.isCompleted) return SCHEDULE_COMPLETED // non-local return from scheduleTask
/**
* We are about to add new task and we have to make sure that [DelayedTaskQueue]
* invariant is maintained. The code in this lambda is additionally executed under
* the lock of [DelayedTaskQueue] and working with [DelayedTaskQueue.timeNow] here is thread-safe.
*/
if (firstTask == null) {
/**
* When adding the first delayed task we simply update queue's [DelayedTaskQueue.timeNow] to
* the current now time even if that means "going backwards in time". This makes the structure
* self-correcting in spite of wild jumps in `nanoTime()` measurements once all delayed tasks
* are removed from the delayed queue for execution.
*/
delayed.timeNow = now
} else {
/**
* Carefully update [DelayedTaskQueue.timeNow] so that it does not sweep past first's tasks time
* and only goes forward in time. We cannot let it go backwards in time or invariant can be
* violated for tasks that were already scheduled.
*/
val firstTime = firstTask.nanoTime
// compute min(now, firstTime) using a wrap-safe check
val minTime = if (firstTime - now >= 0) now else firstTime
// update timeNow only when going forward in time
if (minTime - delayed.timeNow > 0) delayed.timeNow = minTime
}
/**
* Here [DelayedTaskQueue.timeNow] was already modified and we have to double-check that newly added
* task does not violate [DelayedTaskQueue] invariant because of that. Note also that this scheduleTask
* function can be called to reschedule from one queue to another and this might be another reason
* where new task's time might now violate invariant.
* We correct invariant violation (if any) by simply changing this task's time to now.
*/
if (nanoTime - delayed.timeNow < 0) nanoTime = delayed.timeNow
true
}
return SCHEDULE_OK
}
It finally sets the task into the DelayedTaskQueue with the current time.
// Inside DefaultExecutor
override fun run() {
ThreadLocalEventLoop.setEventLoop(this)
registerTimeLoopThread()
try {
var shutdownNanos = Long.MAX_VALUE
if (!DefaultExecutor.notifyStartup()) return
while (true) {
Thread.interrupted() // just reset interruption flag
var parkNanos = DefaultExecutor.processNextEvent() /* Notice here, it calls the processNextEvent */
if (parkNanos == Long.MAX_VALUE) {
// nothing to do, initialize shutdown timeout
if (shutdownNanos == Long.MAX_VALUE) {
val now = nanoTime()
if (shutdownNanos == Long.MAX_VALUE) shutdownNanos = now + DefaultExecutor.KEEP_ALIVE_NANOS
val tillShutdown = shutdownNanos - now
if (tillShutdown <= 0) return // shut thread down
parkNanos = parkNanos.coerceAtMost(tillShutdown)
} else
parkNanos = parkNanos.coerceAtMost(DefaultExecutor.KEEP_ALIVE_NANOS) // limit wait time anyway
}
if (parkNanos > 0) {
// check if shutdown was requested and bail out in this case
if (DefaultExecutor.isShutdownRequested) return
parkNanos(this, parkNanos)
}
}
} finally {
DefaultExecutor._thread = null // this thread is dead
DefaultExecutor.acknowledgeShutdownIfNeeded()
unregisterTimeLoopThread()
// recheck if queues are empty after _thread reference was set to null (!!!)
if (!DefaultExecutor.isEmpty) DefaultExecutor.thread // recreate thread if it is needed
}
}
// Called by run inside the run of DefaultExecutor
override fun processNextEvent(): Long {
// unconfined events take priority
if (processUnconfinedEvent()) return nextTime
// queue all delayed tasks that are due to be executed
val delayed = _delayed.value
if (delayed != null && !delayed.isEmpty) {
val now = nanoTime()
while (true) {
// make sure that moving from delayed to queue removes from delayed only after it is added to queue
// to make sure that 'isEmpty' and `nextTime` that check both of them
// do not transiently report that both delayed and queue are empty during move
delayed.removeFirstIf {
if (it.timeToExecute(now)) {
enqueueImpl(it)
} else
false
} ?: break // quit loop when nothing more to remove or enqueueImpl returns false on "isComplete"
}
}
// then process one event from queue
dequeue()?.run()
return nextTime
}
And then the event loop (run function) of internal actual object DefaultExecutor : EventLoopImplBase(), Runnable {...} finally handles the tasks by dequeuing the tasks and resuming the actual Continuation which was suspended the function by calling delay if the delay time has reached.
All suspending functions work the same way, when compiled it gets converted into a state machine with callbacks.
When you call delay what happens is that a message is posted on a queue with a certain delay, similar to Handler().postDelayed(delay) and, when the delay has lapsed, it calls back to the suspension point and resumes execution.
You can check the source code for the delay function to see how it works:
public suspend fun delay(timeMillis: Long) {
if (timeMillis <= 0) return // don't delay
return suspendCancellableCoroutine sc# { cont: CancellableContinuation<Unit> ->
cont.context.delay.scheduleResumeAfterDelay(timeMillis, cont)
}
}
So if the delay is positive, it schedules the callback in the delay time.