Partitioning dataframe based on certain range in PySpark - dataframe

Suppose, my dataframe looks like the one below. It has three different accounts (column "accnt") with the month (column "mn") ranging from 1 to 4. I want to precisely extract the "val2" for each account which has Null values in months 1 to 3.
---------------------------
accnt | mn | value | val2
---------------------------
1 | 1 | Null | 5
1 | 2 | Null | 5
1 | 3 | Null | 5
1 | 4 | 5 | 5
2 | 1 | 3 | 4.5
2 | 2 | 2 | 4.5
2 | 3 | Null | 4.5
2 | 4 | 4 | 4.5
3 | 1 | Null | Null
3 | 2 | Null | Null
3 | 3 | Null | Null
3 | 4 | Null | Null
So, my output would be like this:
---------------------------
accnt | mn | value | val2
---------------------------
1 | 1 | Null | 5
1 | 2 | Null | 5
1 | 3 | Null | 5
3 | 1 | Null | Null
3 | 2 | Null | Null
3 | 3 | Null | Null
My code:
df_data = {'accnt': [1,1,1,1,2,2,2,2,3,3,3,3,],
'mn': [1,2,3,4,1,2,3,4,1,2,3,4,],
'value': [None,None,None,5,3,2,None,4, None, None, None, None],
'val2': [5,5,5,5,4.5,4.5, 4.5, 4.5, None, None, None, None],
}
import pandas as pd
from pyspark.sql.function import *
df_pandas = pd.DataFrame.from_dict(df_data)
df = spark_session.createDataFrame(df_pandas)
df_final = df.where(isnan(col("value")) & \
(col("mn").isin(1,2,3))).select('accnt','mn','value', 'val2')
But the output also contains "accnt" value 2 which should not be there. I guess window functions would be handy here. Can anyone help me, please?

You're correct - you will need window functions. Your current filter does not take into account other rows for the same "accnt".
from pyspark.sql import functions as F, Window as W
cond = (F.isnan("value") & F.col("mn").isin(1,2,3)).cast('long')
df2 = df.withColumn('_flag', F.sum(cond).over(W.partitionBy('accnt')) >= 3)
df_final = df2.filter('_flag').select(df['*'])
df_final.show()
# +-----+---+-----+----+
# |accnt| mn|value|val2|
# +-----+---+-----+----+
# | 1| 1| NaN| 5.0|
# | 1| 2| NaN| 5.0|
# | 1| 3| NaN| 5.0|
# | 1| 4| 5.0| 5.0|
# | 3| 1| NaN| NaN|
# | 3| 2| NaN| NaN|
# | 3| 3| NaN| NaN|
# | 3| 4| NaN| NaN|
# +-----+---+-----+----+

Related

pyspark add 0 with empty index

I have dataframe like below:
+--------+---------+---------+
| name | index | score |
+--------+---------+---------+
| name0 | 0 | 50 |
| name0 | 2 | 90 |
| name0 | 3 | 100 |
| name0 | 5 | 85 |
| name1 | 1 | 65 |
| name1 | 2 | 50 |
| name1 | 3 | 70 |
+--------+---------+---------+
and index should be 0~5, so what I want to get is:
+--------+---------+---------+
| name | index | score |
+--------+---------+---------+
| name0 | 0 | 50 |
| name0 | 1 | 0 |
| name0 | 2 | 90 |
| name0 | 3 | 100 |
| name0 | 4 | 0 |
| name0 | 5 | 85 |
| name1 | 0 | 0 |
| name1 | 1 | 65 |
| name1 | 2 | 50 |
| name1 | 3 | 70 |
| name1 | 4 | 0 |
| name1 | 5 | 0 |
+--------+---------+---------+
I want to fill 0 in empty index, but I have no idea.
Is there any solution? Please consider that I don't use pandas.
Cross join the names with a range of indices, then left join to the original dataframe using name and index, and replace nulls with 0.
spark.conf.set("spark.sql.crossJoin.enabled", True)
df2 = (df.select('name')
.distinct()
.join(spark.range(6).toDF('index'))
.join(df, ['name', 'index'], 'left')
.fillna({'score': 0})
)
df2.show()
+-----+-----+-----+
| name|index|score|
+-----+-----+-----+
|name0| 0| 50|
|name0| 1| 0|
|name0| 2| 90|
|name0| 3| 100|
|name0| 4| 0|
|name0| 5| 85|
|name1| 0| 0|
|name1| 1| 65|
|name1| 2| 50|
|name1| 3| 70|
|name1| 4| 0|
|name1| 5| 0|
+-----+-----+-----+

Group query in subquery to get column value as column name

The data i've in my database:
| id| some_id| status|
| 1| 1 | SUCCESS|
| 2| 2 | SUCCESS|
| 3| 1 | SUCCESS|
| 4| 3 | SUCCESS|
| 5| 1 | SUCCESS|
| 6| 4 | FAILED |
| 7| 1 | SUCCESS|
| 8| 1 | FAILED |
| 9| 4 | FAILED |
| 10| 1 | FAILED |
.......
I ran a query to group by id and status to get the below result:
| some_id| count| status|
| 1 | 20| SUCCESS|
| 2 | 5 | SUCCESS|
| 3 | 10| SUCCESS|
| 2 | 15| FAILED |
| 3 | 12| FAILED |
| 4 | 25 | FAILED |
I want to use the above query as subquery to get the result below, where the distinct status are column name.
| some_id| SUCCESS| FAILED|
| 1 | 20 | null/0|
| 2 | 5 | 15 |
| 3 | 10 | 12 |
| 4 | null/0| 25 |
Any other approach to get the final data is also appreciated. Let me know if need more info.
Thanks
You may use a pivot query here with the help of FILTER:
SELECT
some_id,
COUNT(*) FILTER (WHERE status = 'SUCCESS') AS SUCCESS,
COUNT(*) FILTER (WHERE status = 'FAILED') AS FAILED
FROM yourTable
GROUP BY
some_id;
Demo

Java Spark Sql add column with sum of 2 cells

given a dataset with 2 columns:
| col1 | col2 |
| 1 | 2 |
| 2 | 2 |
| 1 | 2 |
| 1 | 2 |
I would like to add a column with the sum of col1 and col2
| col1 | col2 | col3 |
| 1 | 2 | 3 |
| 2 | 2 | 4 |
| 1 | 2 | 3 |
| 1 | 2 | 3 |
I have found this question which basically seems to do exactly the same but in Scala.
Any tip?
Assuming your data is present in df, the desired output can be obtained by using either of the below mentioned ways,
Using Dataframe operations
df.select("col1", "col2", (df3.col1 + df3.col2).alias("col3")).show()
Using Spark SQL
df.createOrReplaceTempView("temp_data")
spark.sql("select *, (col1 + col2) as col3 from temp_data").show()
Output:
+----+----+----+
|col1|col2|col3|
+----+----+----+
| 1| 2| 3|
| 2| 2| 4|
| 1| 2| 3|
| 1| 2| 3|
+----+----+----+
Please find the below answer to create a new column in df.
val df1 = df.withColumn("new col", col("col1") + col("col2"))
df1.show

How to flatten a pyspark dataframes that contains multiple rows per id?

I have a pyspark dataframe with two id columns id and id2. Each id is repeated exactly n times. All id's have the same set of id2's. I'm trying to "flatten" the matrix resulting from each unique id into one row according to id2.
Here's an example to explain what I'm trying to achieve, my dataframe looks like this:
+----+-----+--------+--------+
| id | id2 | value1 | value2 |
+----+-----+--------+--------+
| 1 | 1 | 54 | 2 |
+----+-----+--------+--------+
| 1 | 2 | 0 | 6 |
+----+-----+--------+--------+
| 1 | 3 | 578 | 14 |
+----+-----+--------+--------+
| 2 | 1 | 10 | 1 |
+----+-----+--------+--------+
| 2 | 2 | 6 | 32 |
+----+-----+--------+--------+
| 2 | 3 | 0 | 0 |
+----+-----+--------+--------+
| 3 | 1 | 12 | 2 |
+----+-----+--------+--------+
| 3 | 2 | 20 | 5 |
+----+-----+--------+--------+
| 3 | 3 | 63 | 22 |
+----+-----+--------+--------+
The desired output is the following table:
+----+----------+----------+----------+----------+----------+----------+
| id | value1_1 | value1_2 | value1_3 | value2_1 | value2_2 | value2_3 |
+----+----------+----------+----------+----------+----------+----------+
| 1 | 54 | 0 | 578 | 2 | 6 | 14 |
+----+----------+----------+----------+----------+----------+----------+
| 2 | 10 | 6 | 0 | 1 | 32 | 0 |
+----+----------+----------+----------+----------+----------+----------+
| 3 | 12 | 20 | 63 | 2 | 5 | 22 |
+----+----------+----------+----------+----------+----------+----------+
So, basically, for each unique id and for each column col, I will have n new columns col_1,... for each of the n id2 values.
Any help would be appreciated!
In Spark 2.4 you can do this way
var df3 =Seq((1,1,54 , 2 ),(1,2,0 , 6 ),(1,3,578, 14),(2,1,10 , 1 ),(2,2,6 , 32),(2,3,0 , 0 ),(3,1,12 , 2 ),(3,2,20 , 5 ),(3,3,63 , 22)).toDF("id","id2","value1","value2")
scala> df3.show()
+---+---+------+------+
| id|id2|value1|value2|
+---+---+------+------+
| 1| 1| 54| 2|
| 1| 2| 0| 6|
| 1| 3| 578| 14|
| 2| 1| 10| 1|
| 2| 2| 6| 32|
| 2| 3| 0| 0|
| 3| 1| 12| 2|
| 3| 2| 20| 5|
| 3| 3| 63| 22|
+---+---+------+------+
using coalesce retrieve the first value of the id.
scala> var df4 = df3.groupBy("id").pivot("id2").agg(coalesce(first("value1")),coalesce(first("value2"))).orderBy(col("id"))
scala> val newNames = Seq("id","value1_1","value2_1","value1_2","value2_2","value1_3","value2_3")
Renaming columns
scala> df4.toDF(newNames: _*).show()
+---+--------+--------+--------+--------+--------+--------+
| id|value1_1|value2_1|value1_2|value2_2|value1_3|value2_3|
+---+--------+--------+--------+--------+--------+--------+
| 1| 54| 2| 0| 6| 578| 14|
| 2| 10| 1| 6| 32| 0| 0|
| 3| 12| 2| 20| 5| 63| 22|
+---+--------+--------+--------+--------+--------+--------+
rearranged column if needed. let me know if you have any question related to the same. HAppy HAdoop

How to add a column to a pyspark dataframe which contains the mean of one based on the grouping on another column

It is similar to some other questions but it is different.
Let say we have a pyspark dataframe df as below:
+-----+------+-----+
|col1 | col2 | col3|
+-----+------+-----+
|A | 5 | 6 |
+-----+------+-----+
|A | 5 | 8 |
+-----+------+-----+
|A | 6 | 3 |
+-----+------+-----+
|A | 5 | 9 |
+-----+------+-----+
|B | 9 | 6 |
+-----+------+-----+
|B | 3 | 8 |
+-----+------+-----+
|B | 9 | 8 |
+-----+------+-----+
|C | 3 | 4 |
+-----+------+-----+
|C | 5 | 1 |
+-----+------+-----+
I want to add another column as new_col which contains the mean of col2 based on grouping on col1. So, the answer must be as follows
+-----+------+------+--------+
|col1 | col2 | col3 | new_col|
+-----+------+------+--------+
| A | 5 | 6 | 5.25 |
+-----+------+------+--------+
| A | 5 | 8 | 5.25 |
+-----+------+------+--------+
| A | 6 | 3 | 5.25 |
+-----+------+------+--------+
| A | 5 | 9 | 5.25 |
+-----+------+------+--------+
| B | 9 | 6 | 7 |
+-----+------+------+--------+
| B | 3 | 8 | 7 |
+-----+------+------+--------+
| B | 9 | 8 | 7 |
+-----+------+------+--------+
| C | 3 | 4 | 4 |
+-----+------+------+--------+
| C | 5 | 1 | 4 |
+-----+------+------+--------+
Any help will be appreciated.
Step 1: Creating the DataFrame.
from pyspark.sql.functions import avg, col
from pyspark.sql.window import Window
values = [('A',5,6),('A',5,8),('A',6,3),('A',5,9),('B',9,6),('B',3,8),('B',9,8),('C',3,4),('C',5,1)]
df = sqlContext.createDataFrame(values,['col1','col2','col3'])
df.show()
+----+----+----+
|col1|col2|col3|
+----+----+----+
| A| 5| 6|
| A| 5| 8|
| A| 6| 3|
| A| 5| 9|
| B| 9| 6|
| B| 3| 8|
| B| 9| 8|
| C| 3| 4|
| C| 5| 1|
+----+----+----+
Step 2: Creating another column having the mean, by grouping over column A.
w = Window().partitionBy('col1')
df = df.withColumn('new_col',avg(col('col2')).over(w))
df.show()
+----+----+----+-------+
|col1|col2|col3|new_col|
+----+----+----+-------+
| B| 9| 6| 7.0|
| B| 3| 8| 7.0|
| B| 9| 8| 7.0|
| C| 3| 4| 4.0|
| C| 5| 1| 4.0|
| A| 5| 6| 5.25|
| A| 5| 8| 5.25|
| A| 6| 3| 5.25|
| A| 5| 9| 5.25|
+----+----+----+-------+
Ok, after a lot of trying, I could answer the question myself. I post the answer here for anyone else with the similar question. The original file is a csv file here.
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
#reading the file
df = spark.read.csv('file's name.csv', header=True)
df.show()
output
+-----+------+-----+
|col1 | col2 | col3|
+-----+------+-----+
|A | 5 | 6 |
+-----+------+-----+
|A | 5 | 8 |
+-----+------+-----+
|A | 6 | 3 |
+-----+------+-----+
|A | 5 | 9 |
+-----+------+-----+
|B | 9 | 6 |
+-----+------+-----+
|B | 3 | 8 |
+-----+------+-----+
|B | 9 | 8 |
+-----+------+-----+
|C | 3 | 4 |
+-----+------+-----+
|C | 5 | 1 |
+-----+------+-----+
from pyspark.sql import functions as func
#Grouping the dataframe based on col1
col1group = df.groupBy('col1')
#Computing the average of col2 based on the grouping on col1
a= col1group.agg(func.avg("col2"))
a.show()
output
+-----+----------+
|col1 | avg(col2)|
+-----+----------+
| A | 5.25 |
+-----+----------+
| B | 7.0 |
+-----+----------+
| C | 4.0 |
+-----+----------+
Now, we join the last table with the initial dataframe to generate our desired dataframe:
df=test1.join(a, on = 'lable', how = 'inner')
df.show()
output
+-----+------+------+---------+
|col1 | col2 | col3 |avg(col2)|
+-----+------+------+---------+
| A | 5 | 6 | 5.25 |
+-----+------+------+---------+
| A | 5 | 8 | 5.25 |
+-----+------+------+---------+
| A | 6 | 3 | 5.25 |
+-----+------+------+---------+
| A | 5 | 9 | 5.25 |
+-----+------+------+---------+
| B | 9 | 6 | 7 |
+-----+------+------+---------+
| B | 3 | 8 | 7 |
+-----+------+------+---------+
| B | 9 | 8 | 7 |
+-----+------+------+---------+
| C | 3 | 4 | 4 |
+-----+------+------+---------+
| C | 5 | 1 | 4 |
+-----+------+------+---------+
Now change the name of the last column to whatever we want
df = df.withColumnRenamed('avg(val1)', 'new_col')
df.show()
output
+-----+------+------+--------+
|col1 | col2 | col3 | new_col|
+-----+------+------+--------+
| A | 5 | 6 | 5.25 |
+-----+------+------+--------+
| A | 5 | 8 | 5.25 |
+-----+------+------+--------+
| A | 6 | 3 | 5.25 |
+-----+------+------+--------+
| A | 5 | 9 | 5.25 |
+-----+------+------+--------+
| B | 9 | 6 | 7 |
+-----+------+------+--------+
| B | 3 | 8 | 7 |
+-----+------+------+--------+
| B | 9 | 8 | 7 |
+-----+------+------+--------+
| C | 3 | 4 | 4 |
+-----+------+------+--------+
| C | 5 | 1 | 4 |
+-----+------+------+--------+