Query process steps of select query - sql

I have confused with query process steps of select query. I read some docs, select query will run like this
1. Getting Data (From, Join)
2. Row Filter (Where)
3. Grouping (Group by)
4. Group Filter (Having)
5. Return Expressions (Select)
6. Order & Paging (Order by & Limit / Offset)
I retry test run a query join A table ( 70m records ) and B table( 75m records)
select *
from A join B on A.code = B.box_code
where B.box_code = '123'
compare with
select *
from A join (select * from B where box_code = '123' ) on A.code = B.box_code
I assume the first query will run slower than second query. Because the first query will take time when mapping large data while second query filters box_code before mapping data. But two queries run the same. Why did that happen?
I searched google, it may be related to clustered index, but I am not sure.
1 more question , why clustered index can get where condition to filter data before join ? i think the query will run join before where
Where did I get it wrong?
illustrating images
first query
second query
Thanks

This part is wrong...
select query will run like this
Getting Data (From, Join)
Row Filter (Where)
Grouping (Group by)
Group Filter (Having)
Return Expressions (Select)
Order & Paging (Order by & Limit / Offset)
Oracle has a number of operations that it can perform to satisfy a query. Some operations may require child operations to be completed first. Operations include things like TABLE ACCESS BY INDEX ROWID, INDEX RANGE SCAN, and NESTED LOOPS.
Oracle's optimizer decides which operations are necessary and in what order. It very often will, for example, apply WHERE conditions to a row source before joining that row source to another one. It does that for exactly the reason you imply in your post: because it is probably faster to filter a million rows down to 10 before doing a join.
Oracle maintains an elaborate set of statistics on each table and column so that it can estimate when you submit your query what is likely to work well.
Theoretically, your job when writing SQL is to describe what you want and leave the how part to Oracle. In practice, the how part is still important, so your question is a very good one. Read Oracle's documentation on the subject, titled "Oracle Database SQL Tuning Guide". There is a version for each release of the database and they're available for free online (see: https://docs.oracle.com).

Related

reduce the amount of data scanned by Athena when using aggregate functions

The below query scans 100 mb of data.
select * from table where column1 = 'val' and partition_id = '20190309';
However the below query scans 15 GB of data (there are over 90 partitions)
select * from table where column1 = 'val' and partition_id in (select max(partition_id) from table);
How can I optimize the second query to scan the same amount of data as the first?
There are two problems here. The efficiency of the the scalar subquery above select max(partition_id) from table, and the one #PiotrFindeisen pointed out around dynamic filtering.
The the first problem is that queries over the partition keys of a Hive table are a lot more complex than they appear. Most folks would think that if you want the max value of a partition key, you can simply execute a query over the partition keys, but that doesn't work because Hive allows partitions to be empty (and it also allows non-empty files that contain no rows). Specifically, the scalar subquery above select max(partition_id) from table requires Trino (formerly PrestoSQL) to find the max partition containing at least one row. The ideal solution would be to have perfect stats in Hive, but short of that the engine would need to have custom logic for hive that open files of the partitions until it found a non empty one.
If you are are sure that your warehouse does not contain empty partitions (or if you are ok with the implications of that), you can replace the scalar sub query with one over the hidden $partitions table"
select *
from table
where column1 = 'val' and
partition_id = (select max(partition_id) from "table$partitions");
The second problem is the one #PiotrFindeisen pointed out, and has to do with the way that queries are planned an executed. Most people would look at the above query, see that the engine should obviously figure out the value of select max(partition_id) from "table$partitions" during planning, inline that into the plan, and then continue with optimization. Unfortunately, that is a pretty complex decision to make generically, so the engine instead simply models this as a broadcast join, where one part of the execution figures out that value, and broadcasts the value to the rest of the workers. The problem is the rest of the execution has no way to add this new information into the existing processing, so it simply scans all of the data and then filters out the values you are trying to skip. There is a project in progress to add this dynamic filtering, but it is not complete yet.
This means the best you can do today, is to run two separate queries: one to get the max partition_id and a second one with the inlined value.
BTW, the hidden "$partitions" table was added in Presto 0.199, and we fixed some minor bugs in 0.201. I'm not sure which version Athena is based on, but I believe it is is pretty far out of date (the current release at the time I'm writing this answer is 309.
EDIT: Presto removed the __internal_partitions__ table in their 0.193 release so I'd suggest not using the solution defined in the Slow aggregation queries for partition keys section below in any production systems since Athena 'transparently' updates presto versions. I ended up just going with the naive SELECT max(partition_date) ... query but also using the same lookback trick outlined in the Lack of Dynamic Filtering section. It's about 3x slower than using the __internal_partitions__ table, but at least it won't break when Athena decides to update their presto version.
----- Original Post -----
So I've come up with a fairly hacky way to accomplish this for date-based partitions on large datasets for when you only need to look back over a few partitions'-worth of data for a match on the max, however, please note that I'm not 100% sure how brittle the usage of the information_schema.__internal_partitions__ table is.
As #Dain noted above, there are really two issues. The first being how slow an aggregation of the max(partition_date) query is, and the second being Presto's lack of support for dynamic filtering.
Slow aggregation queries for partition keys
To solve the first issue, I'm using the information_schema.__internal_partitions__ table which allows me to get quick aggregations on the partitions of a table without scanning the data inside the files. (Note that partition_value, partition_key, and partition_number in the below queries are all column names of the __internal_partitions__ table and not related to your table's columns)
If you only have a single partition key for your table, you can do something like:
SELECT max(partition_value) FROM information_schema.__internal_partitions__
WHERE table_schema = 'DATABASE_NAME' AND table_name = 'TABLE_NAME'
But if you have multiple partition keys, you'll need something more like this:
SELECT max(partition_date) as latest_partition_date from (
SELECT max(case when partition_key = 'partition_date' then partition_value end) as partition_date, max(case when partition_key = 'another_partition_key' then partition_value end) as another_partition_key
FROM information_schema.__internal_partitions__
WHERE table_schema = 'DATABASE_NAME' AND table_name = 'TABLE_NAME'
GROUP BY partition_number
)
WHERE
-- ... Filter down by values for e.g. another_partition_key
)
These queries should run fairly quickly (mine run in about 1-2 seconds) without scanning through the actual data in the files, but again, I'm not sure if there are any gotchas with using this approach.
Lack of Dynamic Filtering
I'm able to mitigate the worst effects of the second problem for my specific use-case because I expect there to always be a partition within a finite amount of time back from the current date (e.g. I can guarantee any data-production or partition-loading issues will be remedied within 3 days). It turns out that Athena does do some pre-processing when using presto's datetime functions, so this does not have the same types of issues with Dynamic Filtering as using a sub-query.
So you can change your query to limit how far it will look back for the actual max using the datetime functions so that the amount of data scanned will be limited.
SELECT * FROM "DATABASE_NAME"."TABLE_NAME"
WHERE partition_date >= cast(date '2019-06-25' - interval '3' day as varchar) -- Will only scan partitions from 3 days before '2019-06-25'
AND partition_date = (
-- Insert the partition aggregation query from above here
)
I don't know if it is still relevant, but just found out:
Instead of:
select * from table where column1 = 'val' and partition_id in (select max(partition_id) from table);
Use:
select a.* from table a
inner join (select max(partition_id) max_id from table) b on a.partition_id=b.max_id
where column1 = 'val';
I think it has something to do with optimizations of joins to use partitions.

Splitting large table into 2 dataframes via JDBC connection in RStudio

Through R I connect to a remotely held database. The issue I have is my hardware isn't so great and the dataset contains tens of millions of rows with about 10 columns per table. When I run the below code, at the df step, I get a "Not enough RAM" error from R:
library(DatabaseConnector)
conn <- connect(connectionDetails)
df <- querySql(conn,"SELECT * FROM Table1")
What I thought about doing was splitting the tables into two parts any filter/analyse/combine as needed going forward. I think because I use the conn JDBC conection I have to use SQL syntax to make it work. With SQL, I start with the below code:
df <- querySql(conn,"SELECT TOP 5000000 FROM Table1")
And then where I get stuck is how do I create a second dataframe starting with n - 5000000 rows and ending at the final row, retrieved from Table1.
I'm open to suggestions but I think there are two potential answers to this question. The first is to work within the querySql to get it working. The second is to use an R function other than querySql (no idea what this would look like). I'm limited to R due to work environment.
The SQL statement
SELECT TOP 5000000 * from Table1
is not doing what you think it's doing.
Relational tables are conceptually unordered.
A relation is defined as a set of n-tuples. In both mathematics and the relational database model, a set is an unordered collection of unique, non-duplicated items, although some DBMSs impose an order to their data.
Selecting from a table produces a result-set. Result-sets are also conceptually unordered unless and until you explicitly specify an order for them, which is generally done using an order by clause.
When you use a top (or limit, depending on the DBMS) clause to reduce the number of records to be returned by a query (let's call these the "returned records") below the number of records that could be returned by that query (let's call these the "selected records") and if you have not specified an order by clause, then it is conceptually unpredictable and random which of the selected records will be chosen as the returned records.
Since you have not specified an order by clause in your query, you are effectively getting 5,000,000 unpredictable and random records from your table. Every single time you run the query you might get a different set of 5,000,000 records (conceptually, at least).
Therefore, it doesn't make sense to ask about how to get a second result-set "starting with n - 5000000 and ending at the final row". There is no n, and there is no final row. The choice of returned records was not deterministic, and the DBMS does not remember such choices of past queries. The only conceivable way such information could be incorporated into a subsequent query would be to explicitly include it in the SQL, such as by using a not in condition on an id column and embedding id values from the first query as literals, or doing some kind of negative join, again, involving the embedding of id values as literals. But obviously that's unreasonable.
There are two possible solutions here.
1: order by with limit and offset
Take a look at the PostgreSQL documentation on limit and offset. First, just to reinforce the point about lack of order, take note of the following paragraphs:
When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown, unless you specified ORDER BY.
The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a query in any particular order unless ORDER BY is used to constrain the order.
Now, this solution requires that you specify an order by clause that fully orders the result-set. An order by clause that only partially orders the result-set will not be enough, since it will still leave room for some unpredictability and randomness.
Once you have the order by clause, you can then repeat the query with the same limit value and increasing offset values.
Something like this:
select * from table1 order by id1, id2, ... limit 5000000 offset 0;
select * from table1 order by id1, id2, ... limit 5000000 offset 5000000;
select * from table1 order by id1, id2, ... limit 5000000 offset 10000000;
...
2: synthesize a numbering column and filter on it
It is possible to add a column to the select clause which will provide a full order for the result-set. By wrapping this SQL in a subquery, you can then filter on the new column and thereby achieve your own pagination of the data. In fact, this solution is potentially slightly more powerful, since you could theoretically select discontinuous subsets of records, although I've never seen anyone actually do that.
To compute the ordering column, you can use the row_number() partition function.
Importantly, you will still have to specify id columns by which to order the partition. This is unavoidable under any conceivable solution; there always must be some deterministic, predictable record order to guide stateless paging through data.
Something like this:
select * from (select *, row_number() over (id1, id2, ...) rn from table1) t1 where rn>0 and rn<=5000000;
select * from (select *, row_number() over (id1, id2, ...) rn from table1) t1 where rn>5000000 and rn<=10000000;
select * from (select *, row_number() over (id1, id2, ...) rn from table1) t1 where rn>10000000 and rn<=15000000;
...
Obviously, this solution is more complicated and verbose than the previous one. And the previous solution might allow for performance optimizations not possible under the more manual approach of partitioning and filtering. Hence I would recommend the previous solution.
My above discussion focuses on PostgreSQL, but other DBMSs should provide equivalent features. For example, for SQL Server, see Equivalent of LIMIT and OFFSET for SQL Server?, which shows an example of the synthetic numbering solution, and also indicates that (at least as of SQL Server 2012) you can use OFFSET {offset} ROWS and FETCH NEXT {limit} ROWS ONLY to achieve limit/offset functionality.

MS Access 2010 SQL Top N query by group performance issue (continued)

I have signficant performcance issues (up to time-out) in MS Access 2010 with the query below. The table TempTableAnalysis contains between 10'000-15'000 records. I have already received input from this forum to work with a temporary table in the top 10 query (MS Access 2010 SQL Top N query by group performance issue)
Can anyone explain how to implement the temporary table in the subquery and how to join it? I can't get it to work.
Any other suggestions to improve performance are highly appreciated.
Here is my query:
SELECT
t2.Loc,
t2.ABCByPick,
t2.Planner,
t2.DmdUnit,
ROUND(t2.MASE,2) AS MASE,
ROUND(t2.AFAR,2) AS AFAR
FROM TempTableAnalysis AS t2
WHERE t2.MASE IN (
SELECT TOP 10 t1.MASE
FROM TempTableAnalysis AS t1
WHERE t1.ABCByPick = t2.ABCByPick
ORDER BY t1.MASE DESC
)
ORDER BY
t2.ABCByPick,
t2.MASE DESC;
Optimizing Access Query Performance For Large Data Sets
Based on your posted SQL Query, you have some options available to optimize and speed up the performance.
SELECT
t2.Loc,
t2.ABCByPick,
t2.Planner,
t2.DmdUnit,
ROUND(t2.MASE,2) AS MASE,
ROUND(t2.AFAR,2) AS AFAR
FROM TempTableAnalysis AS t2
...
This is the first part where TempTableAnalysis is the multi-thousand record subquery. If you want to squeeze a little more performance out of the use of this "Temp" Table, don't use it as a dynamic query (i.e., calculated on demand each time the query is opened), try constructing a macro that pushes the output to a static table:
Appending Subquery Data to a Static Table:
Create a QUERY object and change its type to DELETE. Design it to delete the contents of your "temporary" table object. If you prefer using SQL, the command will look like:
DELETE My_Table.*
FROM My_Table;
Create a QUERY object and change its type to APPEND. Design it to query all fields from your query defined by the SQL statement of this OP. Again, the SQL version of this task has the following syntax:
INSERT INTO StaticAnalysisTable ( ID, Loc, Item, AvgOfScaledError )
SELECT t1.ID, t1.Loc, t1.Item, t1.AvgOfScaledError
FROM TempTableAnalysis as t1;
The next step is to automate the population of this static table and it is optional. It's simple however and will make it less likely that you will make the mistake of forgetting to "Refresh" and accessing your static table while it has stale data... causing inaccuracies in your results.
Create a macro with two steps. Each step will have the following definition: OPEN QUERY. When prompted for the query to open, reference the objects you created in the previous two steps in the following order (important): (1) DELETE Query: (your delete query name) then (2) APPEND Query: (your append query name).
SQL Query Comments and Suggestions
The following part of the posted SQL query could use some help:
...
WHERE t2.MASE IN (
SELECT TOP 10 t1.MASE
FROM TempTableAnalysis AS t1
WHERE t1.ABCByPick = t2.ABCByPick
ORDER BY t1.MASE DESC
)
ORDER BY
t2.ABCByPick,
t2.MASE DESC;
There is a join across the sub query that generates the TOP-10 data and the outermost query that correlates these results with the supplementing MASE table data. This isn't necessary if the TempTableAnalysis.MASE represents a key value.
ORDER BY
in the inner most query isn't necessary unless it is intended to force some sort of selection criteria (as in when using SQL analytical functions) this doesn't look like one of those cases. Ordering records from large data sets is also a wasteful cpu and memory sink.
EDIT: Just as a counter-point argument, the ORDER BY clause used beside a TOP N query actually has a purpose, but I am still not clear if it is necessary. Just to round out the discussion, another SO thread talks about How to Select Top 10 in an Access Query.
WHERE t2.MASE IN (...
You may be experiencing blocks in performance with very large in-list set operations. On an Oracle database server, I have discovered with other developers that there is a limitation to the number of discrete elements in an in-list query operator. That value was in the thousands... which may be further limited based on server and database resources.
Consider using a SQL JOIN operator. The place where you define TABLE objects can also be populated with SQL defined queries with aliases known as INLINE VIEWS. Since you're using ACCESS, if an inline view does not work directly, just define another ACCESS QUERY object and reference it in your final query as if it were a table...
A possible rewrite to the ending part of the original query:
SELECT
t2.Loc,
t2.ABCByPick,
t2.Planner,
...
FROM TempTableAnalysis AS t2,
(SELECT TOP 10 t1.MASE, t1.ABCByPick
FROM TempTableAnalysis AS t1) AS ttop
WHERE t2.MASE = ttop.MASE
AND t2.ABCByPick = ttop.ABCByPick
ORDER BY
t2.ABCByPick,
t2.MASE DESC;
You will definitely need to run through these recommendations and validate the output data for accuracy. This represents approaches to capturing some of the "low-hanging fruit" (easy items) that you can pursue to speed up your query and reporting operations.
Conclusions and Closing Comments
As a background to other readers, the database object TempTableAnalysis is not a static table. It is the result of a sub query presented in another SO post requesting help with a Access TOP N Query. The query comes from multiple tables approaching 10,000 records in size (each?).
Tip: A query result in Access ALSO has potential table-like behaviors. You can push the output to a table for joining (as described above) or just join to the query object itself (careful though, especially when you get to "chaining" multiple query operations...)
The strategy of this solution was:
To minimize the number of trips through one or more instances of this very large table.
To pre-process and index optimize any data that would otherwise be "static" for the duration of its analysis.
To audit and review the SQL code used to obtain the final results.
Definitely look into Access MACROS. Coupled with identifying static data in your data sets, you can offload processing of your complex background analytic queries to improve the user experience when they view and query through the final results. Good Luck!

What is the order of execution for this SQL statement

I have below SQL Query :
SELECT TOP 5 C.CustomerID,C.CustomerName,C.CustomerSalary
FROM Customer C
WHERE C.CustomerSalary > 10000
ORDER BY C.CustomerSalary DESC
What will be execution order of the following with proper explanation ?
TOP Clause
WHERE Clause
ORDER BY Clause
Check out the documentation for the SELECT statement, in particular this section:
Logical Processing Order of the SELECT statement
The following steps show the logical processing order, or binding
order, for a SELECT statement. This order determines when the objects
defined in one step are made available to the clauses in subsequent
steps. For example, if the query processor can bind to (access) the
tables or views defined in the FROM clause, these objects and their
columns are made available to all subsequent steps. Conversely,
because the SELECT clause is step 8, any column aliases or derived
columns defined in that clause cannot be referenced by preceding
clauses. However, they can be referenced by subsequent clauses such as
the ORDER BY clause. Note that the actual physical execution of the
statement is determined by the query processor and the order may vary
from this list.
which gives the following order:
FROM
ON
JOIN
WHERE
GROUP BY
WITH CUBE or WITH ROLLUP
HAVING
SELECT
DISTINCT
ORDER BY
TOP
WHERE
ORDER BY
TOP
Here is a good article about that: http://blog.sqlauthority.com/2009/04/06/sql-server-logical-query-processing-phases-order-of-statement-execution/
Simply remember this phrase:-
Fred Jones' Weird Grave Has Several Dull Owls
Take the first letter of each word, and you get this:-
FROM
(ON)
JOIN
WHERE
GROUP BY
(WITH CUBE or WITH ROLLUP)
HAVING
SELECT
DISTINCT
ORDER BY
TOP
Hope that helps.
This is exact execution order, with your case.
1-FROM
2-WHERE
3-SELECT
4-ORDER BY
5-TOP
TOP, WHERE, and ORDER BY are not "executed" - they simply describe the desired result and the database query optimizer determines (hopefully) the best plan for the actual execution. The separation between "declaring the desired result" and how it is physically achieved is what makes SQL a "declarative" language.
Assuming there is an index on CustomerSalary, and the table is not clustered, your query will likely be executed as an index seek + table heap access, as illustrated in this SQL Fiddle (click on View Execution Plan at the bottom):
As you can see, first the correct CustomerSalary value is found through the Index Seek, then the row that value belongs to is retrieved from the table heap through RID Lookup (Row ID Lookup). The Top is just for show here (and has 0% cost), as is the Nested Loops for that matter - the starting index seek will return (at most) one row in any case. The whole query is rather efficient and will likely cost only a few I/O operations.
If the table is clustered, you'll likely have another index seek instead of the table heap access, as illustrated in this SQL Fiddle (note the lack of NONCLUSTERED keyword in the DDL SQL):
But beware: I was lucky this time to get the "right" execution plan. The query optimizer might have chosen a full table scan, which is sometimes actually faster on small tables. When analyzing query plans, always try to do that on realistic amounts of data!
Visit https://msdn.microsoft.com/en-us/library/ms189499.aspx for a better explanation.
The following steps show the logical processing order, or binding order, for a SELECT statement. This order determines when the objects defined in one step are made available to the clauses in subsequent steps. For example, if the query processor can bind to (access) the tables or views defined in the FROM clause, these objects and their columns are made available to all subsequent steps. Conversely, because the SELECT clause is step 8, any column aliases or derived columns defined in that clause cannot be referenced by preceding clauses. However, they can be referenced by subsequent clauses such as the ORDER BY clause. Note that the actual physical execution of the statement is determined by the query processor and the order may vary from this list.
FROM
ON
JOIN
WHERE
GROUP BY
WITH CUBE or WITH ROLLUP
HAVING
SELECT
DISTINCT
ORDER BY
TOP
My $0,02 here.
There's two different concepts in action here: the logical execution order and the plan of query execution. An other was to see it is who answers the following questions:
How MSSQL understood my SQL Query?
What it'll do to execute it in the best possible way given the current schema and data?
The first question is answered by the logical execution order. Brian's answer show what it is. It's the way SQL understood your command: "FROM Customer table (aliased as C) consider only the rows WHERE the C.CustomerSalary > 10000, ORDER them BY C.CustomerSalary in descendent order and SELECT the columns listed for the TOP 5 rows". The resultset will obey that meaning
The second question's answer is the query execution plan - and it depends on your schema (table definitions, selectivity of data, quantity of rows in the customer table, defined indexes, etc) since is heavily dependant of SQL Server optimizer internal workings.
Here is the complete sequence for sql server :
1. FROM
2. ON
3. JOIN
4. WHERE
5. GROUP BY
6. WITH CUBE or WITH ROLLUP
7. HAVING
8. SELECT
9. DISTINCT
10. ORDER BY
11. TOP
So from the above list, you can easily understand the execution sequence of TOP, WHERE and ORDER BY which is :
1. WHERE
2. ORDER BY
3. TOP
Get more information about it from Microsoft

Why select Top clause could lead to long time cost

The following query takes forever to finish. But if I remove the top 10 clause, it finishs rather quickly. big_table_1 and big_table_2 are 2 tables with 10^5 records.
I used to believe that top clause will reduce the time cost, but it's apparently not here. Why???
select top 10 ServiceRequestID
from
(
(select *
from big_table_1
where big_table_1.StatusId=2
) cap1
inner join
big_table_2 cap2
on cap1.ServiceRequestID = cap2.CustomerReferenceNumber
)
There are other stackoverflow discussions on this same topic (links at bottom). As noted in the comments above it might have something to do with indexes and the optimizer getting confused and using the wrong one.
My first thought is that you are doing a select top serviceid from (select *....) and the optimizer may have difficulty pushing the query down to the inner queries and making using of the index.
Consider rewriting it as
select top 10 ServiceRequestID
from big_table_1
inner join big_table_2 cap2
on cap1.servicerequestid = cap2.customerreferencenumber
and big_table_1.statusid = 2
In your query, the database is probably trying to merge the results and return them and THEN limit it to the top 10 in the outer query. In the above query the database will only have to gather the first 10 results as results are being merged, saving loads of time. And if servicerequestID is indexed, it will be sure to use it. In your example, the query is looking for the servicerequestid column in a result set that has already been returned in a virtual, unindexed format.
Hope that makes sense. While hypothetically the optimizer is supposed to take whatever format we put SQL in and figure out the best way to return values every time, the truth is that the way we put our SQL together can really impact the order in which certain steps are done on the DB.
SELECT TOP is slow, regardless of ORDER BY
Why is doing a top(1) on an indexed column in SQL Server slow?
I had a similar problem with a query like yours. The query ordered but without the top clause took 1 sec, same query with top 3 took 1 minute.
I saw that using a variable for the top it worked as expected.
The code for your case:
declare #top int = 10;
select top (#top) ServiceRequestID
from
(
(select *
from big_table_1
where big_table_1.StatusId=2
) cap1
inner join
big_table_2 cap2
on cap1.ServiceRequestID = cap2.CustomerReferenceNumber
)
I cant explain why but I can give an idea:
try adding SET ROWCOUNT 10 before your query. It helped me in some cases. Bear in mind that this is a scope setting so you have to set it back to its original value after running your query.
Explanation:
SET ROWCOUNT: Causes SQL Server to stop processing the query after the specified number of rows are returned.
This can also depend on what you mean by "finished". If "finished" means you start seeing some display on a gui, that does not necessarily mean the query has completed executing. It can mean that the results are beginning to stream in, not that the streaming is complete. When you wrap this into a subquery, the outer query can't really do it's processing until all the results of the inner query are available:
the outer query is dependent on the length of time it takes to return the last row of the inner query before it can "finish"
running the inner query independently may only requires waiting until the first row is returned before seeing any results
In Oracle, there were "first_rows" and "all_rows" hints that were somewhat related to manipulating this kind of behaviour. AskTom discussion.
If the inner query takes a long time between generating the first row and generating the last row, then this could be an indicator of what is going on. As part of the investigation, I would take the inner query and modify it to have a grouping function (or an ordering) to force processing all rows before a result can be returned. I would use this as a measure of how long the inner query really takes for comparison to the time in the outer query takes.
Drifting off topic a bit, it might be interesting to try simulating something like this in Oracle: create a Pipelined function to stream back numbers; stream back a few (say 15), then spin for a while before streaming back more.
Used a jdbc client to executeQuery against the pipelined function. The Oracle Statement fetchSize is 10 by default. Loop and print the results with a timestamp. See if the results stagger. I could not test this with Postgresql (RETURN NEXT), since Postgres does not stream the results from the function.
Oracle Pipelined Function
A pipelined table function returns a row to its invoker immediately
after processing that row and continues to process rows. Response time
improves because the entire collection need not be constructed and
returned to the server before the query can return a single result
row. (Also, the function needs less memory, because the object cache
need not materialize the entire collection.)
Postgresql RETURN NEXT
Note: The current implementation of RETURN NEXT and RETURN QUERY
stores the entire result set before returning from the function, as
discussed above. That means that if a PL/pgSQL function produces a
very large result set, performance might be poor: data will be written
to disk to avoid memory exhaustion, but the function itself will not
return until the entire result set has been generated. A future
version of PL/pgSQL might allow users to define set-returning
functions that do not have this limitation.
JDBC Default Fetch Sizes
statement.setFetchSize(100);
When debugging things like this I find that the quickest way to figure out how SQL Server "sees" the two queries is to look at their query plans. Hit CTRL-L in SSMS in the query view and the results will show what logic it will use to build your results when the query is actually executed.
SQL Server maintains statistics about the data your tables, e.g. histograms of the number of rows with data in certain ranges. It gathers and uses these statistics to try to predict the "best" way to run queries against those tables. For example, it might have data that suggests for some inputs a particular subquery might be expected to return 1M rows, while for other inputs the same subquery might return 1000 rows. This can lead it to choose different strategies for building the results, say using a table scan (exhaustively search the table) instead of an index seek (jump right to the desired data). If the statistics don't adequately represent the data, the "wrong" strategy can be chosen, with results similar to what you're experiencing. I don't know if that's the problem here, but that's the kind of thing I would look for.
If you want to compare performances of your two queries, you have to run these two queries in the same situation ( with clean memory buffers ) and have mumeric statistics
Run this batch for each query to compare execution time and statistics results
(Do not run it on a production environment) :
DBCC FREEPROCCACHE
GO
CHECKPOINT
GO
DBCC DROPCLEANBUFFERS
GO
SET STATISTICS IO ON
GO
SET STATISTICS TIME ON
GO
-- your query here
GO
SET STATISTICS TIME OFF
GO
SET STATISTICS IO OFF
GO
I've just had to investigate a very similar issue.
SELECT TOP 5 *
FROM t1 JOIN t2 ON t2.t1id = t1.id
WHERE t1.Code = 'MyCode'
ORDER BY t2.id DESC
t1 has 100K rows, t2 20M rows, The average number of rows from the joined tables for a t1.Code is about 35K. The actual resultset is only 3 rows because t1.Code = 'MyCode' only matches 2 rows which only have 3 corresponding rows in t2. Stats are up-to-date.
With the TOP 5 as above the query takes minutes, with the TOP 5 removed the query returns immediately.
The plans with and without the TOP are completely different.
The plan without the TOP uses an index seek on t1.Code, finds 2 rows, then nested loop joins 3 rows via an index seek on t2. Very quick.
The plan with the TOP uses an index scan on t2 giving 20M rows, then nested loop joins 2 rows via an index seek on t1.Code, then applies the top operator.
What I think makes my TOP plan so bad is that the rows being picked from t1 and t2 are some of the newest rows (largest values for t1.id and t2.id). The query optimiser has assumed that picking the first 5 rows from an evenly distributed average resultset will be quicker than the non-TOP approach. I tested this theory by using a t1.code from the very earliest rows and the response is sub-second using the same plan.
So the conclusion, in my case at least, is that the problem is a result of uneven data distribution that is not reflected in the stats.
TOP does not sort the results to my knowledge unless you use order by.
So my guess would be, as someone had already suggested, that the query isn't taking longer to execute. You simply start seeing the results faster when you don't have TOP in the query.
Try using #sql_mommy query, but make sure you have the following:
To get your query to run faster, you could create an index on servicerequestid and statusid in big_table_1 and an index on customerreferencenumber in big_table_2. If you create unclustered indexes, you should get an index only plan with very fast results.
If I remember correctly, the TOP results will be in the same order as the index you us on big_table_1, but I'm not sure.
GĂ­sli
It might be a good idea to compare the execution plans between the two. Your statistics might be out of date. If you see a difference between the actual execution plans, there is your difference in performance.
In most cases, you would expect better performance in the top 10. In your case, performance is worse. If this is the case you will not only see a difference between the execution plans, but you will also see a difference in the number of returned rows in the estimated execution plan and the actual execution plan, leading to the poor decission by the SQL engine.
Try again after recomputing your statistics (and while you're at it, rebuilding indices)
Also check if it helps to take out the where big_table_1.StatusId=2 and instead go for
select top 10 ServiceRequestID
from big_table_1 as cap1 INNER JOIN
big_table_2 as cap2
ON cap1.ServiceRequestID = cap2.CustomerReferenceNumber
WHERE cap1.StatusId=2
I find this format much more readable, though it should (though remotely possibly it doesn't) optimise to the same execution plan. The returned endresult will be identical regardless