I have a two box that should touch each other in straight line, so I have done two approach to reward:
Approach 1: Reward when distance is decreasing
this approach works well in 50% event after 100 million steps of training. The problem is that two box do not touch each other completely straight and it fails in 50%
Approach 2 Reward when distance is decreasing and radius difference between two box is decreasing
So here is the methods
if(distance < lastDistance)
AddReward(...)
lastDistance = distance;
if(radius < lastRadius )
AddReward(...)
lastRadius = radius;
The problem with approach 2 is that the box 1 which is moving is only rotating after a 10 million steps and even not decreasing distance
So How can I reward for multi parameters (distance, radius) problems
May be you can try to use only the first way and improve it.
You can add more conditions to help your agent to reach the goal.
for example :
reward = 0
if(distance < lastDistance)
reward += 1
lastDistance = distance
if(distance < 5)
reward += 5
if(distance < 3)
reward += 10
PS : the values are chosen randomly. Change them to reach the goal you want.
Related
To explain the question it's best to start with this
picture
I am modeling an optimization decision problem and a feature that I'm trying to implement is heat transfer between the process stages (a = 1, 2) taking into account which equipment type is chosen (j = 1, 2, 3) by the binary decision variable y.
The temperatures for the equipment are fixed values and my goal is to find (in the case of the picture) dT = 120 - 70 = 50 while keeping the temperature difference as a parameter (I want to keep the problem linear and need to multiply the temperature difference with a variable later on).
Things I have tried:
dT = T[a,j] - T[a-1,j]
(this obviously gives T = 80 for T[a-1,j] which is incorrect)
T[a-1] = sum(T[a-1,j] * y[a-1,j] for j in (1,2,3)
This will make the problem non-linear when I multiply with another variable.
I am using pyomo and the linear "glpk" solver. Thank you for reading my post and if someone could help me with this it is greatly appreciated!
If you only have 2 stages and 3 pieces of equipment at each stage, you could reformulate and let a binary decision variable Y[i] represent each of the 9 possible connections and delta_T[i] be a parameter that represents the temp difference associated with the same 9 connections which could easily be calculated and put into a model parameter.
If you want to keep in double-indexed, and assuming that there will only be 1 piece of equipment selected at each stage, you could take the sum-product of the selection variable and temps at each stage and subtract them.
dT[a] = sum(T[a, j]*y[a, j] for j in J) - sum(T[a-1, j]*y[a-1, j] for j in J)
for a ∈ {2, 3, ..., N}
I keep stumbling into game/simulation solutions for finding distance while time is running, and it's not what I'm looking for.
I'm looking for an O(1) formula to calculate the (0 or 1 or 2) clock time(s) in which two circles are exactly r1+r2 distance from each other. Negative time is possible. It's possible two circles don't collide, and they may not have an intersection (as in 2 cars "clipping" each other while driving too close to the middle of the road in opposite directions), which is messing up all my mx+b solutions.
Technically, a single point collision should be possible.
I'm about 100 lines of code deep, and I feel sure there must be a better way, and I'm not even sure whether my test cases are correct or not. My initial setup was:
dist( x1+dx1*t, y1+dy1*t, x2+dx2*t, y2+dy2*t ) == r1+r2
By assuming the distance at any time t could be calculated with Pythagoras, I would like to know the two points in time in which the distance from the centers is precisely the sum of the radii. I solved for a, b, and c and applied the quadratic formula, and I believe that if I'm assuming they were phantom objects, this would give me the first moment of collision and the final moment of collision, and I could assume at every moment between, they are overlapping.
I'm working under the precondition that it's impossible for 2 objects to be overlapping at t0, which means infinite collision of "stuck inside each other" is not possible. I'm also filtering out and using special handling for when the slope is 0 or infinite, which is working.
I tried calculating the distance when, at the moment object 1 is at the intersection point, it's distance from object 2, and likewise when o2 is at the intersection point, but this did not work as it's possible to have collision when they are not at their intersection.
I'm having problems for when the slopes are equal, but different magnitude.
Is there a simple physics/math formula for this already?
Programming language doesn't matter, pseudcode would be great, or any math formula that doesn't have complex symbols (I'm not a math/physics person)... but nothing higher order (I assume python probably has a collide(p1, p2) method already)
There is a simple(-ish) solution. You already mentioned using the quadratic formula which is a good start.
First define your problem where the quadratic formula can be useful, in this case, distance between to centers, over time.
Let's define our time as t
Because we are using two dimensions we can call our dimensions x & y
First let's define the two center points at t = 0 of our circles as a & b
Let's also define our velocity at t = 0 of a & b as u & v respectively.
Finally, assuming a constant acceleration of a & b as o & p respectively.
The equation for a position along any one dimension (which we'll call i) with respect to time t is as follows: i(t) = 1 / 2 * a * t^2 + v * t + i0; with a being constant acceleration, v being initial velocity, and i0 being initial position along dimension i.
We know the distance between two 2D points at any time t is the square root of ((a.x(t) - b.x(t))^2 + (a.y(t) - b.y(t))^2)
Using the formula of position along a dimensions we can substitute everything in the distance equation in terms of just t and the constants we defined earlier. For shorthand we will call the function d(t);
Finally using that equation, we will know that the t values where d(t) = a.radius + b.radius are where collision starts or ends.
To put this in terms of quadratic formula we move the radius to the left so we get d(t) - (a.radius + b.radius) = 0
We can then expand and simplify the resulting equation so everything is in terms of t and the constant values that we were given. Using that solve for both positive & negative values with the quadratic formula.
This will handle errors as well because if you get two objects that will never collide, you will get an undefined or imaginary number.
You should be able to translate the rest into code fairly easily. I'm running out of time atm and will write out a simple solution when I can.
Following up on #TinFoilPancakes answer and heavily using using WolframAlpha to simplify the formulae, I've come up with the following pseudocode, well C# code actually that I've commented somewhat:
The Ball class has the following properties:
public double X;
public double Y;
public double Xvel;
public double Yvel;
public double Radius;
The algorithm:
public double TimeToCollision(Ball other)
{
double distance = (Radius + other.Radius) * (Radius + other.Radius);
double a = (Xvel - other.Xvel) * (Xvel - other.Xvel) + (Yvel - other.Yvel) * (Yvel - other.Yvel);
double b = 2 * ((X - other.X) * (Xvel - other.Xvel) + (Y - other.Y) * (Yvel - other.Yvel));
double c = (X - other.X) * (X - other.X) + (Y - other.Y) * (Y - other.Y) - distance;
double d = b * b - 4 * a * c;
// Ignore glancing collisions that may not cause a response due to limited precision and lead to an infinite loop
if (b > -1e-6 || d <= 0)
return double.NaN;
double e = Math.Sqrt(d);
double t1 = (-b - e) / (2 * a); // Collison time, +ve or -ve
double t2 = (-b + e) / (2 * a); // Exit time, +ve or -ve
// b < 0 => Getting closer
// If we are overlapping and moving closer, collide now
if (t1 < 0 && t2 > 0 && b <= -1e-6)
return 0;
return t1;
}
The method will return the time that the Balls collide, which can be +ve, -ve or NaN, NaN means they won't or didn't collide.
Further points to note are, we can check the discriminant against <zero to bail out early which will be most of the time, and avoid the Sqrt. Also since I'm using this in a continuous collision detection system, I'm ignoring collisions (glancing) that will have little or no impact since it's possible the response to the collision won't change the velocities and lead to the same situation being checked infinitely, freezing the simulation.
The 'b' variable can used for this check since luckily it's similar to the dot product. If b is >-1e-6 ie. they're not moving closer fast enough we return NaN, ie. they don't collide. You can tweak this value to avoid freezes, smaller will allow closer glancing collisions but increase the chance of a freeze when they happen like when a bunch of circles are packed tightly together. Likewise to avoid Balls moving through each other we signal an immediate collison if they're already overlapping and moving closer.
I am implementing a very simple animation effect for a game. The scenario is like this:
there is a elastic rubber line, length is 1 meter, when it is extended over 1 meter, it is elastic.
the line connects two dots A and B like this, the distance is S, S > 1 meter
A <------------- B
then fix dot A, and releases B, the line takes B to the direction of A
I want to know how to calculate time T, which B costs to move X meters towards A (X <= S).
Any ideas?
Thanks!
I have been meaning to learn how to animate these kinds of images in sage (a python based platform for math) for a while, so i used this as an excuse. I hope this code snippet and image is helpful.
A = 3
w = 0.5
# x = f(t) = A cos(wt) inside elastic region
# with x = displacement from 1 meter mark
# in the below code, x is the displacement from origin (x = A cos(wt) + 1)
# find speed when we cross the one meter mark
# f'(t) = -Aw sin(wt), but this is also max speed
# ie f'(t at one meter mark) = -Aw
speed_max = -A * w
# time to reach max speed + time to cross last meter
eta = float(pi/2 * 1/w + 1/abs(speed_max))
# the function you were looking for
def time_left(x):
if x < 1:
return x/abs(speed_max)
else:
return 1/w * arccos((x-1)/A)
It may not be clear in the image but within one meter of the origin there is no acceleration.
I need to find the average Edit: total 2D velocity given multiple 2D velocities (speed and direction). A few examples:
Example 1
Velocity 1 is 90° at a speed of 10 pixels or units per second.
Velocity 2 is 270° at a speed of 5 pixels or units per second.
The average velocity is 90° at 5 pixels or units per second.
Example 2
Velocity 1 is 0° at a speed of 10 pixels or units per second
Velocity 2 is 180° at a speed of 10 pixels or units per second
Velocity 3 is 90° at a speed of 8 pixels or units per second
The average velocity is 90° at 8 pixels or units per second
Example 3
Velocity 1 is 0° at 10 pixels or units per second
Velocity 2 is 90° at 10 pixels or units per second
The average velocity is 45° at 14.142 pixels or units per second
I am using JavaScript but it's mostly a language-independent question and I can convert it to JavaScript if necessary.
If you're going to be using a bunch of angles, I would just calculate each speed,
vx = v * cos(theta),
vy = v * sin(theta)
then sum the x velocities and the y velocities separately as vector components and divide by the total number of velocities,
sum(vx) / total v, sum(vy) / total v
and then finally calculate the final speed and direction with your final vx and vy. The magnitude of the speed can be found by a simple application of pythagorean theorem, and then final angle should just be tan-1(y/x).
Per example #3
vx = 10 * cos(90) + 10 * cos(0) = 10,
vy = 10 * sin(90) + 10 * sin(0) = 10
so, tan-1(10/10) = tan-1(1) = 45
then a final magnitude of sqrt(10^2 + 10^2) = 14.142
These are vectors, and you should use vector addition to add them. So right and up are positive, while left and down are negative.
Add your left-to-right vectors (x axis).
Example 1 = -10+5 = -5
Example 2 = -8 = -8
Example 3 = 10 = 10. (90 degrees is generally 90 degrees to the right)
Add you ups and downs similarly and you get these velocities, your left-to-right on the left in the brackets, and your up-to-down on the right.
(-5, 0)
(-8,0)
(10, 10)
These vectors contain all the information you need to plot the motion of an object, you do not need to calculate angles to plot the motion of the object. If for some reason you would rather use speeds (similar to velocity, but different) and angles, then you must first calculate the vectors as above and then use the Pythagorean theorem to find the speed and simple trigonometry to get the angle. Something like this:
var speed = Math.sqrt(x * x + y * y);
var tangeant = y / x;
var angleRadians = Math.atan(tangeant);
var angleDegrees = angleRadians * (180 / Math.PI);
I'll warn you that you should probably talk to someone who know trigonometry and test this well. There is potential for misleading bugs in work like this.
From your examples it sounds like you want addition of 2-dimensional vectors, not averages.
E.g. example 2 can be represented as
(0,10) + (0,-10) + (-8, 0) = (-8,0)
The speed is then equal to the length of the vector:
sqrt(x^2+y^2)
To get average:
add each speed, and then divide by the number of speeds.
10mph + 20mph / 2 = 15
12mph + 14mph + 13mph + 16mph / 4 = 14 (13,75)
This is not so much average as it is just basic vector addition. You're finding multiple "pixel vectors" and adding them together. If you have a velocity vector of 2 pixels to the right, and 1 up, and you add it to a velocity vector of 3 pixels to the left and 2 down, you will get a velocity vector of 1 pixel left, and 1 down.
So the speed is defined by
pij = pixels going up or (-)down
pii = pixels going right or (-)left
speedi = pii1 + pii2 = 2-3 = -1 (1 pixel left)
speedj = pij1 + pij2 = 1-2 = -1 (1 pixel down)
From there, you need to decide which directions are positive, and which are negative. I recommend that left is negative, and down is negative (like a mathematical graph).
The angle of the vector, would be the arctan(speedj/speedi)
arctan(-1/-1) = 45 degrees
I am processing a series of points which all have the same Y value, but different X values. I go through the points by incrementing X by one. For example, I might have Y = 50 and X is the integers from -30 to 30. Part of my algorithm involves finding the distance to the origin from each point and then doing further processing.
After profiling, I've found that the sqrt call in the distance calculation is taking a significant amount of my time. Is there an iterative way to calculate the distance?
In other words:
I want to efficiently calculate: r[n] = sqrt(x[n]*x[n] + y*y)). I can save information from the previous iteration. Each iteration changes by incrementing x, so x[n] = x[n-1] + 1. I can not use sqrt or trig functions because they are too slow except at the beginning of each scanline.
I can use approximations as long as they are good enough (less than 0.l% error) and the errors introduced are smooth (I can't bin to a pre-calculated table of approximations).
Additional information:
x and y are always integers between -150 and 150
I'm going to try a couple ideas out tomorrow and mark the best answer based on which is fastest.
Results
I did some timings
Distance formula: 16 ms / iteration
Pete's interperlating solution: 8 ms / iteration
wrang-wrang pre-calculation solution: 8ms / iteration
I was hoping the test would decide between the two, because I like both answers. I'm going to go with Pete's because it uses less memory.
Just to get a feel for it, for your range y = 50, x = 0 gives r = 50 and y = 50, x = +/- 30 gives r ~= 58.3. You want an approximation good for +/- 0.1%, or +/- 0.05 absolute. That's a lot lower accuracy than most library sqrts do.
Two approximate approaches - you calculate r based on interpolating from the previous value, or use a few terms of a suitable series.
Interpolating from previous r
r = ( x2 + y2 ) 1/2
dr/dx = 1/2 . 2x . ( x2 + y2 ) -1/2 = x/r
double r = 50;
for ( int x = 0; x <= 30; ++x ) {
double r_true = Math.sqrt ( 50*50 + x*x );
System.out.printf ( "x: %d r_true: %f r_approx: %f error: %f%%\n", x, r, r_true, 100 * Math.abs ( r_true - r ) / r );
r = r + ( x + 0.5 ) / r;
}
Gives:
x: 0 r_true: 50.000000 r_approx: 50.000000 error: 0.000000%
x: 1 r_true: 50.010000 r_approx: 50.009999 error: 0.000002%
....
x: 29 r_true: 57.825065 r_approx: 57.801384 error: 0.040953%
x: 30 r_true: 58.335225 r_approx: 58.309519 error: 0.044065%
which seems to meet the requirement of 0.1% error, so I didn't bother coding the next one, as it would require quite a bit more calculation steps.
Truncated Series
The taylor series for sqrt ( 1 + x ) for x near zero is
sqrt ( 1 + x ) = 1 + 1/2 x - 1/8 x2 ... + ( - 1 / 2 )n+1 xn
Using r = y sqrt ( 1 + (x/y)2 ) then you're looking for a term t = ( - 1 / 2 )n+1 0.36n with magnitude less that a 0.001, log ( 0.002 ) > n log ( 0.18 ) or n > 3.6, so taking terms to x^4 should be Ok.
Y=10000
Y2=Y*Y
for x=0..Y2 do
D[x]=sqrt(Y2+x*x)
norm(x,y)=
if (y==0) x
else if (x>y) norm(y,x)
else {
s=Y/y
D[round(x*s)]/s
}
If your coordinates are smooth, then the idea can be extended with linear interpolation. For more precision, increase Y.
The idea is that s*(x,y) is on the line y=Y, which you've precomputed distances for. Get the distance, then divide it by s.
I assume you really do need the distance and not its square.
You may also be able to find a general sqrt implementation that sacrifices some accuracy for speed, but I have a hard time imagining that beating what the FPU can do.
By linear interpolation, I mean to change D[round(x)] to:
f=floor(x)
a=x-f
D[f]*(1-a)+D[f+1]*a
This doesn't really answer your question, but may help...
The first questions I would ask would be:
"do I need the sqrt at all?".
"If not, how can I reduce the number of sqrts?"
then yours: "Can I replace the remaining sqrts with a clever calculation?"
So I'd start with:
Do you need the exact radius, or would radius-squared be acceptable? There are fast approximatiosn to sqrt, but probably not accurate enough for your spec.
Can you process the image using mirrored quadrants or eighths? By processing all pixels at the same radius value in a batch, you can reduce the number of calculations by 8x.
Can you precalculate the radius values? You only need a table that is a quarter (or possibly an eighth) of the size of the image you are processing, and the table would only need to be precalculated once and then re-used for many runs of the algorithm.
So clever maths may not be the fastest solution.
Well there's always trying optimize your sqrt, the fastest one I've seen is the old carmack quake 3 sqrt:
http://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root/
That said, since sqrt is non-linear, you're not going to be able to do simple linear interpolation along your line to get your result. The best idea is to use a table lookup since that will give you blazing fast access to the data. And, since you appear to be iterating by whole integers, a table lookup should be exceedingly accurate.
Well, you can mirror around x=0 to start with (you need only compute n>=0, and the dupe those results to corresponding n<0). After that, I'd take a look at using the derivative on sqrt(a^2+b^2) (or the corresponding sin) to take advantage of the constant dx.
If that's not accurate enough, may I point out that this is a pretty good job for SIMD, which will provide you with a reciprocal square root op on both SSE and VMX (and shader model 2).
This is sort of related to a HAKMEM item:
ITEM 149 (Minsky): CIRCLE ALGORITHM
Here is an elegant way to draw almost
circles on a point-plotting display:
NEW X = OLD X - epsilon * OLD Y
NEW Y = OLD Y + epsilon * NEW(!) X
This makes a very round ellipse
centered at the origin with its size
determined by the initial point.
epsilon determines the angular
velocity of the circulating point, and
slightly affects the eccentricity. If
epsilon is a power of 2, then we don't
even need multiplication, let alone
square roots, sines, and cosines! The
"circle" will be perfectly stable
because the points soon become
periodic.
The circle algorithm was invented by
mistake when I tried to save one
register in a display hack! Ben Gurley
had an amazing display hack using only
about six or seven instructions, and
it was a great wonder. But it was
basically line-oriented. It occurred
to me that it would be exciting to
have curves, and I was trying to get a
curve display hack with minimal
instructions.