I want to add two moving points represent the location of two trains according to the day. My day data is as shown in pic starting from 0 to 7. However, in the resulting animation, the slider does not slide into the integer day. It jumped from 1.75 to 2.25 or 2.75 to 3.25 automatically. Can anyone help me to solve that?
trainpath info
import plotly.graph_objects as go
import pandas as pd
dataset = pd.read_csv('trainpath.csv')
days = []
for k in range(len(dataset['day'])):
if dataset['day'][k] not in days:
days.append(dataset['day'][k])
t1 = [-1, 0, 1, 1, 1, 0, -1, -1, -1]
k1 = [-20, -20, -20, 0, 20, 20, 20, 0, -20]
# make list of trains
trains = []
for train in dataset["train"]:
if train not in trains:
trains.append(train)
# make figure
fig_dict = {
"data": [go.Scatter(x=t1, y=k1,
mode="lines",
line=dict(width=2, color="blue")),
go.Scatter(x=t1, y=k1,
mode="lines",
line=dict(width=2, color="blue"))],
"layout": {},
"frames": []
}
# fill in most of layout
fig_dict['layout']['title'] = {'text':'Train Animation'}
fig_dict["layout"]["xaxis"] = {"range": [-10, 10], "title": "xlocation", 'autorange':False, 'zeroline':False}
fig_dict["layout"]["yaxis"] = {"range": [-22, 22], "title": "ylocation", 'autorange':False, 'zeroline':False}
fig_dict["layout"]["hovermode"] = "closest"
fig_dict["layout"]["updatemenus"] = [
{
"buttons": [
{
"args": [None, {"frame": {"duration": 500, "redraw": False},
"fromcurrent": True, "transition": {"duration": 300,
"easing": "quadratic-in-out"}}],
"label": "Play",
"method": "animate"
},
{
"args": [[None], {"frame": {"duration": 0, "redraw": False},
"mode": "immediate",
"transition": {"duration": 0}}],
"label": "Pause",
"method": "animate"
}
],
"direction": "left",
"pad": {"r": 10, "t": 87},
"showactive": False,
"type": "buttons",
"x": 0.1,
"xanchor": "right",
"y": 0,
"yanchor": "top"
}
]
sliders_dict = {
"active": 0,
"yanchor": "top",
"xanchor": "left",
"currentvalue": {
"font": {"size": 20},
"prefix": "Day:",
"visible": True,
"xanchor": "right"
},
"transition": {"duration": 300, "easing": "cubic-in-out"},
"pad": {"b": 10, "t": 50},
"len": 0.9,
"x": 0.1,
"y": 0,
"steps": []
}
# make data
day = 0
for train in trains:
dataset_by_date = dataset[dataset['day']==day]
dataset_by_date_and_train = dataset_by_date[dataset_by_date['train']==train]
data_dict = {
'x': list(dataset_by_date_and_train['x']),
'y': list(dataset_by_date_and_train['y']),
'mode': 'markers',
'text': train,
'marker': {
'sizemode': 'area',
'sizeref': 20,
'size': 20,
# 'size': list(dataset_by_date_and_train['quantity']) # this section can be used to increase or decrease the marker size to reflect the material quantity
},
'name': train
}
fig_dict['data'].append(data_dict)
# make frames
for day in days:
frame={'data': [go.Scatter(x=t1, y=k1,
mode="lines",
line=dict(width=2, color="blue")),
go.Scatter(x=t1, y=k1,
mode="lines",
line=dict(width=2, color="blue"))], 'name':str(day)}
for train in trains:
dataset_by_date = dataset[dataset['day'] == day]
dataset_by_date_and_train = dataset_by_date[dataset_by_date['train'] == train]
data_dict = {
'x': list(dataset_by_date_and_train['x']),
'y': list(dataset_by_date_and_train['y']),
'mode': 'markers',
'text': train,
'marker': {
'sizemode': 'area',
'sizeref': 20,
'size': 20,
# 'size': list(dataset_by_date_and_train['quantity']) # this section can be used to increase or decrease the marker size to reflect the material quantity
},
'name': train
}
frame['data'].append(data_dict)
fig_dict['frames'].append(frame)
slider_step = {'args': [
[day],
{'frame': {'duration':300, 'redraw':False},
'mode': 'immediate',
'transition': {'duration':3000}}
],
'label': day,
'method': 'animate'}
sliders_dict["steps"].append(slider_step)
if day == 7:
print('H')
fig_dict["layout"]["sliders"] = [sliders_dict]
fig = go.Figure(fig_dict)
fig.show()
Related
I'm trying to find an intelligent solution to how text / annotations are placed into a matplotlib plt so they don't over lap with the data point being annotated. Code snip below. Apologies for long dict at the top. So far I've found adjustText which looks very promising, but I can't seem to get it working in this instance. The code below uses adjust_text(), but at the moment all text is being placed together in one part of the ax and I don't understand why. If you run without adjust_text() it places text roughly where it should be, but text is overlapping the data point in places, which I want to avoid. Grateful for any help.
fig, ax = plt.subplots(figsize=(10, 8))
dl_data = {
"Center": {
"axis": (0, 0),
"tp": (0, 0),
"r": 21.37311395187889,
"colour": "#ffffff",
"text": "Center",
"fill": "solid",
"ec": "#808080",
"alignment": ("center", "center"),
},
"First": {
"r": 6.758772077825972,
"wlc": 45.681000000000004,
"text": "First",
"colour": "#FFFFFF",
"fill": "dashed",
"ec": "#808080",
"alignment": ("center", "center"),
"axis": (-68.82111180215705, -1.2642233142341064e-14),
"tp": (-68.82111180215705, -1.2642233142341064e-14),
},
"Second": {
"r": 18.979199140111263,
"wlc": 360.21000000000004,
"text": "Second",
"colour": "#FFFFFF",
"fill": "dashed",
"ec": "#808080",
"alignment": ("center", "center"),
"axis": (-34.41055590107855, 59.600831137357034),
"tp": (-34.41055590107855, 59.600831137357034),
},
"P1": {
"r": 4.779173568725037,
"wlc": 2.6,
"colour": "#92a700",
"text": "P1, £3",
"fill": "solid",
"ec": "#92a700",
"axis": (-80.83697480558055, -1.4849511367261418e-14),
"alignment": ("right", "top"),
"tp": (-87.6161483743056, -1.6094825349031936e-14),
},
"P2": {
"r": 4.779173568725037,
"wlc": 0,
"colour": "#ffba00",
"text": "P2 has a long\nName, £0\n\n",
"fill": "solid",
"ec": "#ffba00",
"axis": (-13.031791598544089, 30.17548646933409),
"alignment": ("left", "top"),
"tp": (-9.047093352116576, 24.691019844418072),
},
"P3": {
"r": 4.779173568725037,
"wlc": 0.21,
"colour": "#92a700",
"text": "P3 has a very,\nlong long long,\nname, £0 \n",
"fill": "solid",
"ec": "#92a700",
"axis": (-55.78932020361301, 30.175486469334082),
"alignment": ("right", "top"),
"tp": (-59.77401845004052, 24.691019844418065),
},
"P4": {
"r": 15.811388300841896,
"wlc": 250,
"colour": "#e77200",
"text": "P4 also\nhas a longish\nname, £250\n",
"fill": "solid",
"ec": "#e77200",
"axis": (-34.41055590107855, 95.97255740839438),
"alignment": ("center", "center"),
"tp": (-34.41055590107855, 113.78394570923628),
},
"P5": {
"r": 4.779173568725037,
"wlc": 6.6,
"colour": "#92a700",
"text": "P5 is medium,\n£7\n\n",
"fill": "solid",
"ec": "#92a700",
"axis": (-69.00212318005225, 70.8403126698613),
"alignment": ("right", "top"),
"tp": (-75.44950037768407, 72.9351925104148),
},
"P6": {
"r": 10.16857905510893,
"wlc": 103.4,
"colour": "#92a700",
"text": "P6 is a very long name\nlike P4 is also,\n£100\n",
"fill": "solid",
"ec": "#92a700",
"axis": (0.181011377895139, 70.8403126698613),
"alignment": ("left", "top"),
"tp": (11.754017782309209, 74.600610395285),
},
}
ts = []
x_list = []
y_list = []
for c in dl_data.keys():
circle = plt.Circle(
dl_data[c]["axis"], # x, y position
radius=dl_data[c]["r"],
fc=dl_data[c]["colour"], # face colour
ec=dl_data[c]["ec"], # edge colour
zorder=2,
)
ax.add_patch(circle)
x = dl_data[c]["axis"][0]
y = dl_data[c]["axis"][1]
text = dl_data[c]["text"]
if c in ["Center", "First", "Second"]:
pass
else:
ts.append(ax.text(x, y, dl_data[c]["text"]))
x_list.append(x)
y_list.append(y)
adjust_text(
ts,
x=x_list,
y=y_list,
force_points=0.1,
arrowprops=dict(arrowstyle="->", color="red"),
)
plt.axis("scaled")
plt.axis("off")
plt.show()
There are two issues:
adjust_text must called after all drawing is completed, i.e. plt.axis("scaled") must come before adjust_text, see docs:
Call adjust_text the very last, after all plotting (especially
anything that can change the axes limits) has been done.
You must pass your circles as additional objects to be avoided: add_objects=objects
ts = []
x_list = []
y_list = []
objects = []
for c in dl_data.keys():
circle = plt.Circle(
dl_data[c]["axis"], # x, y position
radius=dl_data[c]["r"],
fc=dl_data[c]["colour"], # face colour
ec=dl_data[c]["ec"], # edge colour
zorder=2,
)
objects.append(circle)
ax.add_patch(circle)
x = dl_data[c]["axis"][0]
y = dl_data[c]["axis"][1]
text = dl_data[c]["text"]
if c in ["Center", "First", "Second"]:
pass
else:
ts.append(ax.text(x, y, dl_data[c]["text"].strip()))
x_list.append(x)
y_list.append(y)
plt.axis("scaled")
plt.axis("off")
adjust_text(
ts,
add_objects=objects,
arrowprops=dict(arrowstyle="->", color="red"),
)
I couldn't manage to move the P6 text away from the green and orange circles, though.
I am try to display a billboardjs bubble chart using javascript and html.
I included the lib in my index.html file as:
src="/lib/billboard.pkgd.js"
The codes are very simple but when ran, I got the "NaN" error.
this.d3Chart = bb.generate({
bindto: "#d3bubbleChart",
data: {
type: "bubble",
label: false,
xs: {
data1: "x1",
data2: "x2"
},
columns: [,
["x1", 10, 20, 50, 100, 50],
["x2", 30, 40, 90, 100, 170],
["data1", [20, 50], [30, 10], [50, 28], [60, 70], [100, 80]],
["data2", [350, 50, 30], [230, 90], [200, 100],[250, 150],[200, 200]]
]
},
bubble: {
maxR: 50
},
grid: { y: { show: true } },
axis: {
x: {
label: { text: "AOV", position: "outer-left"},
height: 50,
tick: { format: function(x) { return ("$"+x);}}
},
y: {
fit: false,
min: {fit: true, value: 0},
max: 450,
labels: "yes",
label: { text: "Conversion Rate", position: "outer-bottom"},
tick: { format: function(x) { return (x+"%");}}
}
}
});
Checkout the allowed data for bubble type from API doc:
For 'bubble' type, data can contain dimension value:
- an array of [y, z] data following the order
- or an object with 'y' and 'z' key value
'y' is for y axis coordination and 'z' is the bubble radius value
I'm seeing from your example, that the first data of data2 contains additional value. Removing that will work fine.
this.d3Chart = bb.generate({
data: {
...
columns: [,
// the length for each bubble should be 2
["data2", [350, 50, 30], ...]
]
I want to make this chart in Pentaho CDE:
based in this chart (I think that is the most similar from among CCC Components):
(The code is in this link.)
but I don't know how I can adapt my data input to that graph.
For example, I want to consume the data with this format:
[Year, customers_A, customers_B, cars_A, cars_B] [2014, 8, 4, 23, 20]
[2015, 20, 6, 30, 38]
How I can input my data in this chart?
Your data should come as an object such as this:
data = {
metadata: [
{ colName: "Year", colType:"Numeric", colIndex: 1},
{ colName: "customers_A", colType:"Numeric", colIndex: 2},
{ colName: "customers_B", colType:"Numeric", colIndex: 3},
{ colName: "cars_A", colType:"Numeric", colIndex: 4},
{ colName: "cars_B", colType:"Numeric", colIndex: 5}
],
resultset: [
[2014, 8, 4, 23, 20],
[2015, 20, 6, 30, 38]
],
queryInfo: {totalRows: 2}
}
I want to use the create_coco_tf_record-script provided by tensorflow, to convert the following simple label definition in coco json format to TFRecord:
"info": {
"year": 2018,
"version": null,
"description": "TransferLearningTest",
"contributor": "ralph#r4robotics.com.au",
"url": "labelbox.io",
"date_created": "2018-03-25T08:30:27.427851+00:00"
},
"images": [{
"id": "cjf6gxqjw2fho01619gre5j0y",
"width": 615,
"height": 409,
"file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354",
"license": null,
"flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354",
"coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354",
"date_captured": null
}, {
"id": "cjf6gyhtl55sv01385xtqjrqi",
"width": 259,
"height": 194,
"file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d",
"license": null,
"flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d",
"coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d",
"date_captured": null
}, {
"id": "cjf6gzj9v2g1h0161bwh18chv",
"width": 277,
"height": 182,
"file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682",
"license": null,
"flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682",
"coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682",
"date_captured": null
}, {
"id": "cjf6h0p9n55wz0178pg79lc3c",
"width": 301,
"height": 167,
"file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d",
"license": null,
"flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d",
"coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d",
"date_captured": null
}],
"annotations": [{
"id": 1,
"image_id": "cjf6gxqjw2fho01619gre5j0y",
"category_id": 1,
"segmentation": [
[118.39765618513167, 313.457848898712, 179.7169976455091, 299.1734470204843, 294.6908226914901, 310.3222212573321, 337.1962867729657, 334.7101881586143, 366.4623832276035, 338.89097185223864, 372.03689297966736, 385.5765403887654, 332.31863061175864, 389.75732408238974, 282.84505592143563, 406.48051201843583, 215.9512047089942, 408.5708772844735, 192.2596180064203, 390.4541125044023, 151.8445552101198, 403.6933051688366, 105.1582353958287, 376.51813141795526, 118.39765618513167, 313.457848898712]
],
"area": 22106.876283900496,
"bbox": [105.1582353958287, 0.42912271552648545, 266.8786575838387, 109.39743026398922],
"iscrowd": 0
}, {
"id": 2,
"image_id": "cjf6gxqjw2fho01619gre5j0y",
"category_id": 1,
"segmentation": [
[160.20631983821562, 142.04523900617488, 195.04687288245222, 131.24488556110788, 308.62704390918475, 134.03209241070698, 356.01021731433246, 152.1488571907783, 381.7922053020817, 150.75522718520426, 384.57951334057844, 186.64038911511503, 349.7389071338769, 187.68559832890833, 317.6856089656722, 202.3183678373679, 159.50946624735892, 195.3503772941444, 160.20631983821562, 142.04523900617488]
],
"area": 13123.705213053147,
"bbox": [159.50946624735892, 206.6816321626321, 225.07004709321953, 71.07348227626002],
"iscrowd": 0
}, {
"id": 3,
"image_id": "cjf6gyhtl55sv01385xtqjrqi",
"category_id": 1,
"segmentation": [
[80.06035395893144, 68.18619344603749, 119.11342792196902, 74.69491256085784, 131.84812313721997, 72.14801308536389, 177.97602777539703, 78.09078572494903, 187.59778022105084, 91.67421361042045, 203.1624077063576, 93.37213939731716, 201.18146375358646, 112.04938782407424, 184.76784795099502, 111.200414135477, 169.20322046568833, 122.51994816851872, 128.16920254987957, 117.42614921753086, 114.86852951688535, 114.03029764373744, 93.07803808305403, 114.31328167650393, 70.43857992260781, 103.2767316762287, 80.06035395893144, 68.18619344603749]
],
"area": 4995.907009222967,
"bbox": [70.43857992260781, 71.48005183148128, 132.7238277837498, 54.33375472248123],
"iscrowd": 0
}, {
"id": 4,
"image_id": "cjf6gzj9v2g1h0161bwh18chv",
"category_id": 1,
"segmentation": [
[173.46162883883662, 160.28013107383993, 255.65715601241382, 148.2998138472238, 266.2728180897869, 177.11325728633884, 184.68389092165103, 182.8759506021435, 159.20627416758742, 180.1462513325615, 154.35340470313542, 170.74397441725296, 175.28142885516084, 167.7109803710303, 173.46162883883662, 160.28013107383993]
],
"area": 2509.1082874191734,
"bbox": [154.35340470313542, -0.8759506021434983, 111.91941338665146, 34.576136754919716],
"iscrowd": 0
}, {
"id": 5,
"image_id": "cjf6gzj9v2g1h0161bwh18chv",
"category_id": 1,
"segmentation": [
[37.58112185203197, 87.03332022958155, 45.16373762158412, 93.40262623857566, 94.90570169790779, 106.44448675338808, 106.73458692647054, 87.03332022958155, 46.680260775494574, 73.08155224493905, 40.31086815713212, 74.901344044691, 33.63817553604898, 74.901344044691, 27.875382923127926, 80.9673321371363, 37.58112185203197, 87.03332022958155]
],
"area": 1386.09176276128,
"bbox": [27.875382923127926, 75.55551324661192, 78.85920400334261, 33.36293450844903],
"iscrowd": 0
}, {
"id": 6,
"image_id": "cjf6gzj9v2g1h0161bwh18chv",
"category_id": 1,
"segmentation": [
[200.7590456092244, 136.92608617388885, 181.95412147624396, 120.09295996138994, 234.4258318576678, 85.2135284298296, 255.05055600697247, 103.71478748380605, 200.7590456092244, 136.92608617388885]
],
"area": 1614.301579806095,
"bbox": [181.95412147624396, 45.073913826111145, 73.09643453072852, 51.71255774405926],
"iscrowd": 0
}, {
"id": 7,
"image_id": "cjf6h0p9n55wz0178pg79lc3c",
"category_id": 1,
"segmentation": [
[17.847508506087518, 28.63952607163654, 66.60858665657888, 24.08859036914734, 77.98617155836023, 14.986669362689923, 145.27644948557162, 14.49906202292621, 147.5519565454611, 51.881911126804255, 75.0605019090974, 56.10780833710362, 64.0079859014193, 47.98110201017366, 24.3489855928197, 53.34473314609532, 17.847508506087518, 28.63952607163654]
],
"area": 4189.730491764894,
"bbox": [17.847508506087518, 110.89219166289638, 129.7044480393736, 41.60874631417741],
"iscrowd": 0
}, {
"id": 8,
"image_id": "cjf6h0p9n55wz0178pg79lc3c",
"category_id": 1,
"segmentation": [
[223.94433711573117, 23.27591973645434, 257.10186033759857, 27.82685543894354, 261.32783036444124, 48.306165303102944, 179.73427308501883, 104.86804629868364, 145.27644948557162, 113.3198159185429, 128.37261898053467, 122.42173692500033, 111.46876367433086, 108.76885541531423, 131.29826382863067, 96.09118858515549, 137.14960312715638, 77.56230808005091, 223.94433711573117, 23.27591973645434]
],
"area": 6031.236484118768,
"bbox": [111.46876367433086, 44.57826307499967, 149.85906669011038, 99.14581718854599],
"iscrowd": 0
}, {
"id": 9,
"image_id": "cjf6h0p9n55wz0178pg79lc3c",
"category_id": 1,
"segmentation": [
[26.299423758605975, 125.34733136210352, 40.60267830965016, 111.53193060632253, 117.97024076106304, 72.6862842838929, 133.57379568968702, 80.81299061082292, 132.59856420621048, 93.16559414805232, 111.46876367433086, 115.2702204768582, 64.33305479552251, 138.67514957886033, 46.128923912905776, 139.65033945764822, 23.37375410934314, 148.75226046410563, 8.095292875989244, 141.11316147693933, 26.299423758605975, 125.34733136210352]
],
"area": 3857.6591542480846,
"bbox": [8.095292875989244, 18.24773953589436, 125.47850281369777, 76.06597618021274],
"iscrowd": 0
}],
"licenses": [],
"categories": [{
"supercategory": "Bottle",
"id": 1,
"name": "Bottle"
}]
}
But when I run the script using
with open('coco_labels.json') as json_data:
label_info = json.load(json_data)
IMAGE_FOLDER = "coco_images"
with tf.python_io.TFRecordWriter("training.record") as writer:
for i,image in enumerate(label_info["images"]):
img_data = requests.get(image["file_name"]).content
image_name = "image"+str(i)+".jpg"
image_path = os.path.join(IMAGE_FOLDER,image_name)
with open(image_path, 'wb') as handler:
handler.write(img_data)
image["file_name"] = image_name
tf_example = create_coco_tf_record.create_tf_example(image,
label_info["annotations"][i],
IMAGE_FOLDER,
label_info["categories"]
)
writer.write(tf_example.SerializeToString())
I get the error
(image, annotations_list, image_dir, category_index, include_masks)
124 num_annotations_skipped = 0
125 for object_annotations in annotations_list:
--> 126 (x, y, width, height) = tuple(object_annotations['bbox'])
127 if width <= 0 or height <= 0:
128 num_annotations_skipped += 1
TypeError: string indices must be integers
What could be the problem?
Each image is supposed to receive a list of annotations, and you are providing a single one. Making it a single element list should solve your error.
Ideally, make each item of images in your json be a list itself. As a quick fix, embrace label_info["annotations"][i] in brackets:
[label_info["annotations"][i]]
I have simple bar chart like this:
Here is my C3JS
var chart = c3.generate({
data: {
json:[{"A": 67, "B": 10, "site": "Google", "C": 12}, {"A": 10, "B": 20, "site": "Amazon", "C": 12}, {"A": 25, "B": 10, "site": "Stackoverflow", "C": 8}, {"A": 20, "B": 22, "site": "Yahoo", "C": 12}, {"A": 76, "B": 30, "site": "eBay", "C": 9}],
mimeType: 'json',
keys: {
x: 'site',
value: ['A','B','C']
},
type: 'bar',
selection: {
enabled: true
},
onselected: function(d,element)
{
alert('selected x: '+chart.selected()[0].x+' value: '+chart.selected()[0].value+' name: '+chart.selected()[0].name);
},
groups: [
['A','B','C']
]
},
axis: {
x: {
type: 'category'
}
}
});
After some chart elemnt is selected (clicked), alert shows X and Value and Name attributes of first selected element. For example "selected x: 0 value: 67 name: A" after I click on left-top chart element. How can I get value shown on X axis? In this case it is "Google".
Property categories is populated when the x-axis is declared to be of type category as it is in this case. So to get the data from the x-axis you needs to call the .categories() function.
onselected: function(d,element){alert(chart.categories()[d.index]);}
https://jsfiddle.net/4bos2qzx/1/