Is backup service automacially region-redundant? - azure-backup-vault

I'm learning about Azure redundancy polices, which consists of locally redundant storage, zone redundant storage and region redundant storage.
However when I tried to set up automatic back up service on my virtual machine, it doesn't give me options to choose from. Is backing up always done in a region redundant way? Thanks.

The short answer is no. Azure Backup does not have to use geo-redundancy (GRS) - you could configure a different redundancy option. However, by default it is indeed using GRS.
Please see the Azure Backup Architecture Overview for details: https://learn.microsoft.com/en-us/azure/backup/backup-architecture
Specifically, the 'Where is data backed up?' section outlines the redundancy options.

Related

Blob storage folders bckups

we have a lot of pipelines in the synapse workspace.
using serverless sqlpool which is set to online
dedicated sql pool is paused as we do not use it to hold data...
using DevOps Repository
the support team will be making some clean-up in the environment. i.e. Running an old terraform to re-create the environment, etc.
How is it possible to make sure that
Question:
I understand in our DevOps Repository everything seems to be backed-up except the blob storage folders...
How can we make sure that if in-case something gets lost/ or goes wrong during the workspace clean-up, we will be able to get everything back...?
Thank you
ADLS Gen2 has its own tools for ensuring that DR event won’t affect you. One of the most powerful tools there is replication including Geo-Replicated Storage option.
Data Lake Storage Gen2 already handles 3x replication under the hood to guard against localized hardware failures. Additionally, other replication options, such as ZRS or GZRS, improve HA, while GRS & RA-GRS improve DR. When building a plan for HA, in the event of a service interruption the workload needs access to the latest data as quickly as possible by switching over to a separately replicated instance locally or in a new region.
In a DR strategy, to prepare for the unlikely event of a catastrophic failure of a region, it is also important to have data replicated to a different region using GRS or RA-GRS replication. You must also consider your requirements for edge cases such as data corruption where you may want to create periodic snapshots to fall back to. Depending on the importance and size of the data, consider rolling delta snapshots of 1-, 6-, and 24-hour periods, according to risk tolerances.
For data resiliency with Data Lake Storage Gen2, it is recommended to geo-replicate your data via GRS or RA-GRS that satisfies your HA/DR requirements. Additionally, you should consider ways for the application using Data Lake Storage Gen2 to automatically fail over to the secondary region through monitoring triggers or length of failed attempts, or at least send a notification to admins for manual intervention. Keep in mind that there is tradeoff of failing over versus waiting for a service to come back online.
For more details refer to Best practices for using Azure Data Lake Storage Gen2.
And also here a great article which talks about : Azure Synapse Disaster Recovery Architecture.

Does Horizontal scaling(scale out) option available in AZURE SQL Managed Instance?

Does Horizontal scaling(scale out) option available in AZURE SQL Managed Instance ?
Yes, Azure SQL managed instance support scale out.
You you reference the document #Perter Bons have provided in comment:
Document here:
Scale up/down: Dynamically scale database resources with minimal downtime
Azure SQL Database and SQL Managed Instance enable you to dynamically
add more resources to your database with minimal downtime; however,
there is a switch over period where connectivity is lost to the
database for a short amount of time, which can be mitigated using
retry logic.
Scale out: Use read-only replicas to offload read-only query workloads
As part of High Availability architecture, each single database,
elastic pool database, and managed instance in the Premium and
Business Critical service tier is automatically provisioned with a
primary read-write replica and several secondary read-only replicas.
The secondary replicas are provisioned with the same compute size as
the primary replica. The read scale-out feature allows you to offload
read-only workloads using the compute capacity of one of the
read-only replicas, instead of running them on the read-write
replica.
HTH.
Yes scale out option is available in Business Critical(BC) tier. The BC utilizes three nodes. One is primary and two are secondary. They use Always on on the backend. If you need to utilize for reporting, just ApplicationIntent=Readonly in the connection string and your application will be routed one of the secondary nodes.

Reliability of Windows Azure Storage Logging

We are in the process of creating a piece of software to backup a storage account (blobs & tables, no queues) and while researching how to do this we came across the possibility storage logging. We would like to use this feature to do smart incremental backups after an initial full backup. However in the introductory post for this feature here the following caveat is mentioned:
During normal operation all requests are logged; but it is important to note that logging is provided on a best effort basis. This means we do not guarantee that every message will be logged due to the fact that the log data is buffered in memory at the storage front-ends before being written out, and if a role is restarted then its buffer of logs would be lost.
As this is a backup solution this behavior makes the features unusable, we can't miss a file. However I wonder if this has changed in the meantime as Microsoft has built a number of features on top of it like blob function triggers and very recently their new Azure Event Grid.
My question is whether this behavior has changed in the meantime or are the logs still on a best effort basis and should we stick to our 'scanning' strategy?
The behavior for Azure Storage logs is still same. For your case, you might be better off using the EventGrid notification for Blob storage: https://azure.microsoft.com/en-us/blog/introducing-azure-event-grid-an-event-service-for-modern-applications/

Storing Uploaded Files in Azure Web Sites: File System or Azure Storage

When using Azure Web Sites (WAWS) general opinion seems to be that uploaded content such as photo's or files should be stored in Azure Storage Blobs and not in the WAWS File System.
Clearly using Azure Storage is a great idea if you have a lot of data and need scale and redundancy however for small or simple sites it seems to add another layer of complexity and also means you can't easily use things like ImageResizer without purchasing the Azure compatible licence etc.
So given that products like WordPress from the Azure Gallery uses "/site/wwwroot/wp-content/uploads/" to store all uploaded files on WAWS is there anything wrong with using the WAWS file system for storage or are there other considerations to take into account when using Azure WAWS?
The major drawback to using the WAWS storage is that your data is now intermingled with the application. By saving all of your plugins/images/blobs externally in a database or blob storage, you retain the flexibility to redeploy your application to a new region/datacenter by just pushing your code to the new website and changing connection strings.
If your plugins/images are stored on disk in WAWS, then you need to make sure that you are backing it up appropriately. If anything happens, you need to restore the site along with all of the data that had been uploaded.
Azure Web Sites is using Azure storage as a file storage so essentially the level of complexity you're talking about is abstracted.
Another great benefit that comes with this approach is if you scale your web site to multiple instances all of them will work with exact same file content.
Of course if you want to use pure Azure Storage features like snapshots or sharing specific content to specific users this is not available as is. But for the web site purposes is quite good.
Hope that helps

AWS s3 standard vs. reduced redundancy storage?

Does anyone know of any real-world analysis on data loss using these two AWS s3 storage options? I know from the AWS docs (via Quora) that one is 99.9999999% guarenteed and the other is only 99.99% gaurenteed but I'm looking for data from a non-AWS source.
Anecdotes or something more thorough would both be great. I apologize if this isn't the right SE site for this question. Feel free to suggest a place to migrate it.
I guess it depends on the data you're storing if you really need 99.999999999% level of durability …
If you keep copies of your data locally and are just using S3 as a convenient place to store data that is actively being accessed by services within the AWS infrastructure, RRS might be the right choice for you :)
In my case, I keep fresh files on the normal durability level till I created a local backup and then move them to RRS, which saves you quite a bit a money.