I've been struggling to find an answer for this question. I think this question is similar to what i'm looking for but when i tried this it didn't work.
Because there's no new unique user_id added between 02-20 and 02-27, the cumulative count will be the same. Then for 02-27, there is a unique user_id which hasn't appeared on any previous dates (6)
Here's my input
date user_id
2020-02-20 1
2020-02-20 2
2020-02-20 3
2020-02-20 4
2020-02-20 4
2020-02-20 5
2020-02-21 1
2020-02-22 2
2020-02-23 3
2020-02-24 4
2020-02-25 4
2020-02-27 6
Output table:
date daily_cumulative_count
2020-02-20 5
2020-02-21 5
2020-02-22 5
2020-02-23 5
2020-02-24 5
2020-02-25 5
2020-02-27 6
This is what i tried and the result is not quite what i want
select
stat_date,count(DISTINCT user_id),
sum(count(DISTINCT user_id)) over (order by stat_date rows unbounded preceding) as cumulative_signups
from data_engineer_interview
group by stat_date
order by stat_date
it returns this instead;
date,count,cumulative_sum
2022-02-20,5,5
2022-02-21,1,6
2022-02-22,1,7
2022-02-23,1,8
2022-02-24,1,9
2022-02-25,1,10
2022-02-27,1,11
The problem with this task is that it could be done by comparing each row uniquely with all previous rows to see if there is a match in user_id. Since you are using Redshift I'll assume that your data table could be very large so attacking the problem this way will bog down in some form of a loop join.
You want to think about the problem differently to avoid this looping issue. If you derive a dataset with id and first_date_of_id you can then just do a cumulative sum sorted by date. Like this
select user_id, min("date") as first_date,
count(user_id) over (order by first_date rows unbounded preceding) as date_out
from data_engineer_interview
group by user_id
order by date_out;
This is untested and won't produce the full list of dates that you have in your example output but rather only the dates where new ids show up. If this is an issue it is simple to add in the additional dates with no count change.
We can do this via a correlated subquery followed by aggregation:
WITH cte AS (
SELECT
date,
CASE WHEN EXISTS (
SELECT 1
FROM data_engineer_interview d2
WHERE d2.date < d1.date AND
d2.user_id = d1.user_id
) THEN 0 ELSE 1 END AS flag
FROM (SELECT DISTINCT date, user_id FROM data_engineer_interview) d1
)
SELECT date, SUM(flag) AS daily_cumulative_count
FROM cte
ORDER BY date;
Related
I'm trying to get the rolling amount column totals for each date, from the 1st day of the month to whatever the date column value is, shown in the input table.
Output Requirements
Partition by the 'team' column
Restart rolling totals on the 1st of each month
Question 1
Is my below query correct to get my desired output requirements shown in Output Table below? It seems to work but I must confirm.
SELECT
*,
SUM(amount) OVER (
PARTITION BY
team,
month_id
ORDER BY
date ASC
) rolling_amount_total
FROM input_table;
Question 2
How can I handle duplicate dates, shown in the first 2 rows of Input Table? Whenever there is a duplicate date the amount is a duplicate as well. I see a solution here: https://stackoverflow.com/a/60115061/6388651 but no luck getting it to remove the duplicates. My non-working code example is below.
SELECT
*,
SUM(amount) OVER (
PARTITION BY
team,
month_id
ORDER BY
date ASC
) rolling_amount_total
FROM (
SELECT DISTINCT
date,
amount,
team,
month_id
FROM input_table
) t
Input Table
date
amount
team
month_id
2022-04-01
1
A
2022-04
2022-04-01
1
A
2022-04
2022-04-02
2
A
2022-04
2022-05-01
4
B
2022-05
2022-05-02
4
B
2022-05
Desired Output Table
date
amount
team
month_id
Rolling_Amount_Total
2022-04-01
1
A
2022-04
1
2022-04-02
2
A
2022-04
3
2022-05-01
4
B
2022-05
4
2022-05-02
4
B
2022-05
8
Q1. Your sum() over () is correct
Q2. Replace from input_table, in your first query, with :
from (select date, sum(amount) as amount, team, month_id
from input_table
group by date, team, month_id
) as t
I have a dataset on mysql in the following format, showing the history of events given some client IDs:
Base Data
Text of the dataset (subscriber_table):
user_id type created_at
A past_due 2021-03-27 10:15:56
A reactivate 2021-02-06 10:21:35
A past_due 2021-01-27 10:30:41
A new 2020-10-28 18:53:07
A cancel 2020-07-22 9:48:54
A reactivate 2020-07-22 9:48:53
A cancel 2020-07-15 2:53:05
A new 2020-06-20 20:24:18
B reactivate 2020-06-14 10:57:50
B past_due 2020-06-14 10:33:21
B new 2020-06-11 10:21:24
date_table:
full_date
2020-05-01
2020-06-01
2020-07-01
2020-08-01
2020-09-01
2020-10-01
2020-11-01
2020-12-01
2021-01-01
2021-02-01
2021-03-01
I have been struggling to come up with a query to count subscriber counts given a range of months, which are not necessary included in the event table either because the client is still subscribed or they cancelled and later resubscribed. The output I am looking for is this:
Output
date subscriber_count
2020-05-01 0
2020-06-01 2
2020-07-01 2
2020-08-01 1
2020-09-01 1
2020-10-01 2
2020-11-01 2
2020-12-01 2
2021-01-01 2
2021-02-01 2
2021-03-01 2
Reactivation and Past Due events do not change the subscription status of the client, however only the Cancel and New event do. If the client cancels in a month, they should still be counted as active for that month.
My initial approach was to get the latest entry given a month per subscriber ID and then join them to the premade date table, but when I have months missing I am unsure on how to fill them with the correct status. Maybe a lag function?
with last_record_per_month as (
select
date_trunc('month', created_at)::date order by created_at) as month_year ,
user_id ,
type,
created_at as created_at
from
subscriber_table
where
user_id in ('A', 'B')
order by
created_at desc
), final as (
select
month_year,
created_at,
type
from
last_record_per_month lrpm
right join (
select
date_trunc('month', full_date)::date as month_year
from
date_table
where
full_date between '2020-05-01' and '2021-03-31'
group by
1
order by
1
) dd
on lrpm.created_at = dd.month_year
and num = 1
order by
month_year
)
select
*
from
final
I do have a premade base table with every single date in many years to use as a joining table
Any help with this is GREATLY appreciated
Thanks!
The approach here is to have the subscriber rows with new connections as base and map them to the cancelled rows using a self join. Then have the date tables as base and aggregate them based on the number of users to get the result.
SELECT full_date, COUNT(DISTINCT user_id) FROM date_tbl
LEFT JOIN(
SELECT new.user_id,new.type,new.created_at created_at_new,
IFNULL(cancel.created_at,CURRENT_DATE) created_at_cancel
FROM subscriber new
LEFT JOIN subscriber cancel
ON new.user_id=cancel.user_id
AND new.type='new' AND cancel.type='cancel'
AND new.created_at<= cancel.created_at
WHERE new.type IN('new'))s
ON DATE_FORMAT(s.created_at_new, '%Y-%m')<=DATE_FORMAT(full_date, '%Y-%m')
AND DATE_FORMAT(s.created_at_cancel, '%Y-%m')>=DATE_FORMAT(full_date, '%Y-%m')
GROUP BY 1
Let me breakdown some sections
First up we need to have the subscriber table self joined based on user_id and then left table with rows as 'new' and the right one with 'cancel' new.type='new' AND cancel.type='cancel'
The new ones should always precede the canceled rows so adding this new.created_at<= cancel.created_at
Since we only care about the rows with new in the base table we filter out the rows in the WHERE clause new.type IN('new'). The result of the subquery would look something like this
We can then join this subquery with a Left join the date table such that the year and month of the created_at_new column is always less than equal to the full_date DATE_FORMAT(s.created_at_new, '%Y-%m')<=DATE_FORMAT(full_date, '%Y-%m') but greater than that of the canceled date.
Lastly we aggregate based on the full_date and consider the unique count of users
fiddle
I have two tables Tickets and Tasks. When ticket is registered then it appears in Tickets table and every action that is made with the ticket is saved in the Tasks table. Tickets table includes information like who created the ticket, start and end dates (if it is closed) etc. Tasks table looks like this:
ID Ticket_ID Task_type_ID Task_type Group_ID Submit_Date
1 120 1 Opened 3 2016-12-09 11:10:22.000
2 120 2 Assign 4 2016-12-09 12:10:22.000
3 120 3 Paused 4 2016-12-09 12:30:22.000
4 120 4 Unpause 4 2016-12-10 10:30:22.000
5 120 2 Assign 6 2016-12-12 10:30:22.000
6 120 2 Assign 7 2016-12-12 15:30:22.000
7 120 5 Modify NULL 2016-12-13 15:30:22.000
8 120 6 Closed NULL 2016-12-13 16:30:22.000
I would like to calculate the time how long each group completed their task. The start time is the time when the ticket was assigned to certain group and end time is when that group completes their task (if they assign it elsewhere or close it). But it should not include the paused time(task_type_ID 3 to 4). Also when ticket is assigned to other group the new group ID appears in the previous task/row. If the task goes through multiple groups it should calculate how long the ticket was in the hands of every group.
I know it is complicated but maybe someone has an idea that I can start to build from.
This is a quite sophisticated gaps-and-island problem.
Here is one approach at it:
select distinct
ticket_id,
group_id,
sum(sum(datediff(minute, submit_date, lead_submit_date)))
over(partition by group_id) elapsed_minutes
from (
select
t.*,
row_number() over(partition by ticket_id order by submit_date) rn1,
row_number() over(partition by ticket_id, group_id order by submit_date) rn2,
lead(submit_date) over(partition by ticket_id order by submit_date) lead_submit_date
from mytable t
) t
where task_type <> 'Paused' and group_id is not null
group by ticket_id, group_id, rn1 - rn2
In the subquery, we assign row numbers to records within two different partitions (by tickets vs by ticket and group), and recover the date of the next record with lead().
We can then use the difference between the row numbers to build groups of "adjacent" records (where the tickets stays in the same group), while not taking into account periods when the ticket was paused. Aggregation comes into play here.
The final step is to compute the overall time spent in each group : this handles the case when a ticket is assigned to the same group more than once during its lifecycle (although that's not showing in your sample data, the description of the question makes it sound like that may happen). We could do this with another level of aggregation but I went for a window sum and distinct, which avoids adding one more level of nesting to the query.
Executing the subquery independently might help understanding the logic better (see the below db fiddle).
For your sample data, the query yields:
ticket_id | group_id | minutes_elapsed
--------: | -------: | --------------:
120 | 3 | 60
120 | 4 | 2900
120 | 6 | 300
120 | 7 | 1440
I actually think this is pretty simple. Just use lead() to get the next submit time value and aggregate by the ticket and group ignoring pauses:
select ticket_id, group_id, sum(dur_sec)
from (select t.*,
datediff(second, submit_date, lead(submit_date) over (partition by ticket_id order by submit_date)) as dur_sec
from mytable t
) t
where task_type <> 'Paused' and group_id is not null
group by ticket_id, group_id;
Here is a db<>fiddle (with thanks to GMB for creating the original fiddle).
I have the following table, I am using SQL Server 2008
BayNo FixDateTime FixType
1 04/05/2015 16:15:00 tyre change
1 12/05/2015 00:15:00 oil change
1 12/05/2015 08:15:00 engine tuning
1 04/05/2016 08:11:00 car tuning
2 13/05/2015 19:30:00 puncture
2 14/05/2015 08:00:00 light repair
2 15/05/2015 10:30:00 super op
2 20/05/2015 12:30:00 wiper change
2 12/05/2016 09:30:00 denting
2 12/05/2016 10:30:00 wiper repair
2 12/06/2016 10:30:00 exhaust repair
4 12/05/2016 05:30:00 stereo unlock
4 17/05/2016 15:05:00 door handle repair
on any given day need do find the highest number of fixes made on a given bay number, and if that calculated number is repeated then it should also appear in the resultset
so would like to see the result set as follows
BayNo FixDateTime noOfFixes
1 12/05/2015 00:15:00 2
2 12/05/2016 09:30:00 2
4 12/05/2016 05:30:00 1
4 17/05/2016 15:05:00 1
I manage to get the counts of each but struggling to get the max and keep the highest calculated repeated value. can someone help please
Use window functions.
Get the count for each day by bayno and also find the min fixdatetime for each day per bayno.
Then use dense_rank to compute the highest ranked row for each bayno based on the number of fixes.
Finally get the highest ranked rows.
select distinct bayno,minfixdatetime,no_of_fixes
from (
select bayno,minfixdatetime,no_of_fixes
,dense_rank() over(partition by bayno order by no_of_fixes desc) rnk
from (
select t.*,
count(*) over(partition by bayno,cast(fixdatetime as date)) no_of_fixes,
min(fixdatetime) over(partition by bayno,cast(fixdatetime as date)) minfixdatetime
from tablename t
) x
) y
where rnk = 1
Sample Demo
You are looking for rank() or dense_rank(). I would right the query like this:
select bayno, thedate, numFixes
from (select bayno, cast(fixdatetime) as date) as thedate,
count(*) as numFixes,
rank() over (partition by cast(fixdatetime as date) order by count(*) desc) as seqnum
from t
group by bayno, cast(fixdatetime as date)
) b
where seqnum = 1;
Note that this returns the date in question. The date does not have a time component.
I need to count a value (M_Id) at each change of a date (RS_Date) and create a column grouped by the RS_Date that has an active total from that date.
So the table is:
Ep_Id Oa_Id M_Id M_StartDate RS_Date
--------------------------------------------
1 2001 5 1/1/2014 1/1/2014
1 2001 9 1/1/2014 1/1/2014
1 2001 3 1/1/2014 1/1/2014
1 2001 11 1/1/2014 1/1/2014
1 2001 2 1/1/2014 1/1/2014
1 2067 7 1/1/2014 1/5/2014
1 2067 1 1/1/2014 1/5/2014
1 3099 12 1/1/2014 3/2/2014
1 3099 14 2/14/2014 3/2/2014
1 3099 4 2/14/2014 3/2/2014
So my goal is like
RS_Date Active
-----------------
1/1/2014 5
1/5/2014 7
3/2/2014 10
If the M_startDate = RS_Date I need to count the M_id and then for
each RS_Date that is not equal to the start date I need to count the M_Id and then add that to the M_StartDate count and then count the next RS_Date and add that to the last active count.
I can get the basic counts with something like
(Case when M_StartDate <= RS_Date
then [m_Id] end) as Test.
But I am stuck as how to get to the result I want.
Any help would be greatly appreciated.
Brian
-added in response to comments
I am using Server Ver 10
If using SQL SERVER 2012+ you can use ROWS with your the analytic/window functions:
;with cte AS (SELECT RS_Date
,COUNT(DISTINCT M_ID) AS CT
FROM Table1
GROUP BY RS_Date
)
SELECT *,SUM(CT) OVER(ORDER BY RS_Date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS Run_CT
FROM cte
Demo: SQL Fiddle
If stuck using something prior to 2012 you can use:
;with cte AS (SELECT RS_Date
,COUNT(DISTINCT M_ID) AS CT
FROM Table1
GROUP BY RS_Date
)
SELECT a.RS_Date
,SUM(b.CT)
FROM cte a
LEFT JOIN cte b
ON a.RS_DAte >= b.RS_Date
GROUP BY a.RS_Date
Demo: SQL Fiddle
You need a cumulative sum, easy in SQL Server 2012 using Windowed Aggregate Functions. Based on your description this will return the expected result
SELECT p_id, RS_Date,
SUM(COUNT(*))
OVER (PARTITION BY p_id
ORDER BY RS_Date
ROWS UNBOUNDED PRECEDING)
FROM tab
GROUP BY p_id, RS_Date
It looks like you want something like this:
SELECT
RS_Date,
SUM(c) OVER (PARTITION BY M_StartDate ORDER BY RS_Date ROWS UNBOUNDED PRECEEDING)
FROM
(
SELECT M_StartDate, RS_Date, COUNT(DISTINCT M_Id) AS c
FROM my_table
GROUP BY M_StartDate, RS_Date
) counts
The inline view computes the counts of distinct M_Id values within each (M_StartDate, RS_Date) group (distinctness enforced only within the group), and the outer query uses the analytic version of SUM() to add up the counts within each M_StartDate.
Note that this particular query will not exactly reproduce your example results. It will instead produce:
RS_Date Active
-----------------
1/1/2014 5
1/5/2014 7
3/2/2014 8
3/2/2014 2
This is on account of some rows in your example data with RS_Date 3/2/2014 having a later M_StartDate than others. If this is not what you want then you need to clarify the question, which currently seems a bit inconsistent.
Unfortunately, analytic functions are not available until SQL Server 2012. In SQL Server 2010, the job is messier. It could be done like this:
WITH gc AS (
SELECT M_StartDate, RS_Date, COUNT(DISTINCT M_Id) AS c
FROM my_table
GROUP BY M_StartDate, RS_Date
)
SELECT
RS_Date,
(
SELECT SUM(c)
FROM gc2
WHERE gc2.M_StartDate = gc.M_StartDate AND gc2.RS_Date <= gc.RS_Date
) AS Active
FROM gc
If you are using SQL 2012 or newer you can use LAG to produce a running total.
https://msdn.microsoft.com/en-us/library/hh231256(v=sql.110).aspx