ICU4C does not tokenize Japanese correctly - tokenize

I am using ICU4C library to tokenize japanese text into individual words.
However tokenization giving wrong results
Example: アーティスティック
word break into 5 words -> ア , ー, テ, ィ, スティック
However this is a single word アーティスティック only.
UnicodeString s = UnicodeString::fromUTF8(StringPiece(searchQuery));
std::cout << "In listWordBoundaries" << std::endl;
UErrorCode status = U_ZERO_ERROR;
BreakIterator* bi = BreakIterator::createWordInstance("ja_JP", status);
std::cout << "BreakIterator = " << bi << std::endl;
bi->setText(s);
for (int32_t p = bi->first(), prevBoundary = 0; p != BreakIterator::DONE; prevBoundary = p, p = bi->next())
{
const UnicodeString word = s.tempSubStringBetween(prevBoundary, p);
std::string converted;
word.toUTF8String(converted);
words.emplace_back(converted);
}

Related

Expansion of periodic mesh

I have send this trough the mailing list but it seems not to be fully working at the moment so I am posting it here instead. The issue I am having is that I am trying to expand a periodic mesh and have it returned in a new c3t3 structure instead of having to save a .mesh file and load it afterwards. For this I have tried modifying the File_medit.h found in the Periodic_3_mesh_3/IO folder but am having a few issues. First of all, the tetrahedrals seem to not be properly added when I call the build_triangulation function although the finite_cell vector has all collected values in it. I am having a similar issue with the border_facets, although in this case I am also not sure what data I am supposed to place in surface_patch_id and if perhaps this is causing the issues. I have included the code I am using bellow. Any help is appreciated.
Regards, Kim
/* ==========================================================================
* Based on CGAL's File_medit.h. See CGAL Periodic_3_mesh_3/IO.
* ==========================================================================*/
#ifndef CGAL_PERIODIC_REPLICATOR_H
#define CGAL_PERIODIC_REPLICATOR_H
#include <CGAL/license/Periodic_3_mesh_3.h>
#include <CGAL/Mesh_3/io_signature.h>
#include <CGAL/Mesh_3/tet_soup_to_c3t3.h>
//
#include <CGAL/array.h>
#include <CGAL/assertions.h>
#include <CGAL/IO/File_medit.h>
#include <boost/unordered_map.hpp>
#include <algorithm>
#include <fstream>
#include <iostream>
#include <cstring>
#include <sstream>
#include <cstring>
#include <map>
namespace CGAL {
namespace periodic_replicator {
/**
* \brief expands a periodic mesh to the c3t3 variable
* \param c3t3_periodic the mesh
* \param occurrence_count the number of copies that are printed
* \param distinguish_copies if set to `true`, each copy is assigned a unique color.
* Otherwise, all domains are drawn with subdomain index-based colors.
* \param rebind if set to `true`, labels of cells are rebinded into [1..nb_of_labels]
* \param c3t3 the output mesh
*/
template <class C3T3_Periodic, class C3T3, bool rebind, bool no_patch> ////template <class C3T3_Periodic>
void replicate_periodic_mesh(const C3T3_Periodic& c3t3_periodic,
int occurrence_count[3],
const bool distinguish_copies,
C3T3& c3t3)
{
#ifdef CGAL_MESH_3_IO_VERBOSE
std::cerr << "Output to medit:\n";
#endif
CGAL_precondition(c3t3_periodic.triangulation().is_1_cover());
typedef CGAL::Mesh_3::Medit_pmap_generator<C3T3_Periodic, rebind, no_patch> Generator;
typedef typename Generator::Cell_pmap Cell_pmap;
typedef typename Generator::Facet_pmap Facet_pmap;
typedef typename Generator::Facet_pmap_twice Facet_pmap_twice;
typedef typename Generator::Vertex_pmap Vertex_pmap;
//Generator().print_twice();
Cell_pmap cell_pmap(c3t3_periodic);
Facet_pmap facet_pmap(c3t3_periodic, cell_pmap);
Facet_pmap_twice facet_pmap_twice(c3t3_periodic, cell_pmap);
Vertex_pmap vertex_pmap(c3t3_periodic, cell_pmap, facet_pmap);
// const Facet_index_property_map_twice& facet_twice_pmap = Facet_index_property_map_twice(),
const bool print_each_facet_twice = false;//Generator().print_twice();
CGAL_precondition(occurrence_count[0] >= 1 && occurrence_count[1] >= 1 && occurrence_count[2] >= 1);
// Periodic typedef
typedef typename C3T3_Periodic::Triangulation Triangulation_periodic;
typedef Triangulation_periodic Tr_periodic;
typedef typename Tr_periodic::Bare_point Bare_point;
typedef typename Tr_periodic::Weighted_point Weighted_point;
typedef typename C3T3_Periodic::Vertex_handle Vertex_handle;
typedef typename C3T3_Periodic::Cell_handle Cell_handle;
typedef typename Tr_periodic::Vertex_iterator Vertex_iterator;
typedef typename C3T3_Periodic::Facet_iterator Facet_iterator;
typedef typename C3T3_Periodic::Cell_iterator Cell_iterator;
typedef typename Tr_periodic::Offset Offset;
const Triangulation_periodic& tr_periodic = c3t3_periodic.triangulation();
// Non-periodic typedef
typedef typename C3T3::Triangulation Triangulation;
typedef Triangulation Tr;
typedef typename Tr::Point Point_3;
typedef std::array<int, 3> Facet; // 3 = id
typedef std::array<int, 5> Tet_with_ref; // first 4 = id, fifth = reference
//
std::vector<Point_3> points;
//std::map<Facet, typename Tr::Cell::Surface_patch_index> border_facets_;
std::map<Facet, typename C3T3::Surface_patch_index> border_facets;
std::vector<Tet_with_ref> finite_cells;
//
int number_of_vertices = static_cast<int>(tr_periodic.number_of_vertices());
int number_of_facets = static_cast<int>(c3t3_periodic.number_of_facets());
int number_of_cells = static_cast<int>(c3t3_periodic.number_of_cells());
// number of reproductions over the different axes
int Ox_rn = ceil(occurrence_count[0]);
int Oy_rn = ceil(occurrence_count[1]);
int Oz_rn = ceil(occurrence_count[2]);
int occ_mult = Ox_rn * Oy_rn * Oz_rn;
#ifdef CGAL_PERIODIC_3_MESH_3_VERBOSE
std::cerr << "Expanding periodic mesh... " << std::endl;
std::cerr << "occurrences over each axis: "
<< Ox_rn << " " << Oy_rn << " " << Oz_rn << std::endl;
std::cerr << number_of_vertices << " vertices" << std::endl;
std::cerr << number_of_facets << " facets" << std::endl;
std::cerr << number_of_cells << " cells" << std::endl;
#endif
std::ofstream os("output_control.mesh");
os << std::setprecision(17);
// Vertices
int medit_number_of_vertices = (Ox_rn + 1) * (Oy_rn + 1) * (Oz_rn + 1) * number_of_vertices;
os << "MeshVersionFormatted 1\n"
<< "Dimension 3\n"
<< "Vertices\n" << medit_number_of_vertices << std::endl;
// Build the set of points that is needed to draw all the elements.
// On each axis, we repeat n+1 times the point, where 'n' is the number of
// instances of the mesh that will be printed over that axis. This is because
// a cell 'c' might have point(c,i) that is equal to v with an offset 2
boost::unordered_map<Vertex_handle, int> V;
int inum = 1; // '1' because medit ids start at 1
for(int i=0; i<=Oz_rn; ++i) {
for(int j=0; j<=Oy_rn; ++j) {
for(int k=0; k<=Ox_rn; ++k) {
for(Vertex_iterator vit = tr_periodic.vertices_begin(); vit != tr_periodic.vertices_end(); ++vit) {
if(i == 0 && j == 0 && k == 0)
V[vit] = inum++;
const Offset off(k, j, i);
const Weighted_point& p = tr_periodic.point(vit);
const Bare_point bp = tr_periodic.construct_point(p, off);
int id;
if(i >= 1 || j >= 1 || k >= 1)
id = 7;
else
id = tr_periodic.off_to_int(off);
os << CGAL::to_double(bp.x()) << ' '
<< CGAL::to_double(bp.y()) << ' '
<< CGAL::to_double(bp.z()) << ' ';
if(!distinguish_copies || occ_mult == 1)
os << get(vertex_pmap, vit) << '\n';
else
os << 32 * id + 1 << '\n';
points.push_back(Point_3(CGAL::to_double(bp.x()),
CGAL::to_double(bp.y()),
CGAL::to_double(bp.z())));
}
}
}
}
// Triangles
int medit_number_of_triangles = occ_mult * number_of_facets;
if(print_each_facet_twice)
medit_number_of_triangles *= 2;
os << "Triangles\n" << medit_number_of_triangles << std::endl;
for(int i=0; i<Oz_rn; ++i) {
for(int j=0; j<Oy_rn; ++j) {
for(int k=0; k<Ox_rn; ++k) {
const Offset off(k, j, i);
for(Facet_iterator fit = c3t3_periodic.facets_begin(); fit != c3t3_periodic.facets_end(); ++fit) {
typename Tr::Cell::Surface_patch_index surface_patch_id;
Facet facet;
for(int l=0; l<4; ++l) {
if(l == fit->second)
continue;
Cell_handle c = fit->first;
Vertex_handle v = c->vertex(l);
const Offset combined_off = tr_periodic.combine_offsets(
off, tr_periodic.int_to_off(c->offset(l)));
const int vector_offset = combined_off.x() +
combined_off.y() * (Ox_rn + 1) +
combined_off.z() * (Ox_rn + 1) * (Oy_rn + 1);
const int id = vector_offset * number_of_vertices + V[v];
CGAL_assertion(1 <= id && id <= medit_number_of_vertices);
os << id << " ";
//facet[l] = id;
int temp_ = id;
facet[l] = temp_;
}
// For multiple copies, color to distinguish copies rather than to distinguish subdomains
//int temptest;
if(!distinguish_copies || occ_mult == 1){
os << get(facet_pmap, *fit) << '\n';
} else {
os << 1 + k + 3*j + 9*i << '\n';
}
surface_patch_id.first = 0;
surface_patch_id.second = 1;
border_facets.insert(std::make_pair(facet, surface_patch_id));
// Print triangle again if needed
if(print_each_facet_twice) {
for(int l=0; l<4; ++l) {
if(l == fit->second)
continue;
Cell_handle c = fit->first;
Vertex_handle v = c->vertex(l);
const Offset combined_off = tr_periodic.combine_offsets(
off, tr_periodic.int_to_off(c->offset(l)));
const int vector_offset = combined_off.x() +
combined_off.y() * (Ox_rn + 1) +
combined_off.z() * (Ox_rn + 1) * (Oy_rn + 1);
const int id = vector_offset * number_of_vertices + V[v];
CGAL_assertion(1 <= id && id <= medit_number_of_vertices);
os << id << " ";
int temp_ = id;
facet[l] = temp_;
}
if(!distinguish_copies || occ_mult == 1)
os << get(facet_pmap_twice, *fit) << '\n';
else
os << 1 + k + 3*j + 9*i << '\n';
//surface_patch_id = ???;
//border_facets.insert(std::make_pair(facet, surface_patch_id));
}
}
}
}
}
// Tetrahedra
os << "Tetrahedra\n" << occ_mult * number_of_cells << std::endl;
for(int i=0; i<Oz_rn; ++i) {
for(int j=0; j<Oy_rn; ++j) {
for(int k=0; k<Ox_rn; ++k) {
const Offset off(k, j, i);
for(Cell_iterator cit = c3t3_periodic.cells_begin(); cit !=c3t3_periodic.cells_end(); ++cit) {
Tet_with_ref t;
for(int l=0; l<4; ++l) {
const Offset combined_off = tr_periodic.combine_offsets(
off, tr_periodic.int_to_off(cit->offset(l)));
const int vector_offset = combined_off.x() +
combined_off.y() * (Ox_rn + 1) +
combined_off.z() * (Ox_rn + 1) * (Oy_rn + 1);
const int id = vector_offset * number_of_vertices + V[cit->vertex(l)];
CGAL_assertion(1 <= id && id <= medit_number_of_vertices);
os << id << " ";
t[l] = id - 1;
}
// For multiple copies, color to distinguish copies rather than to distinguish subdomains
if(!distinguish_copies || occ_mult == 1) {
os << get(cell_pmap, cit) << '\n';
t[4] = get(cell_pmap, cit);
} else {
os << 1 + k + 3*j + 9*i << '\n';
t[4] = 1 + k + 3*j + 9*i;
}
finite_cells.push_back(t);
}
}
}
}
os << "End" << std::endl;
//
//std::vector<typename Tr::Vertex_handle> vertices(0);
std::vector<typename Tr::Vertex_handle> vertices(points.size() + 1);
bool is_well_built = build_triangulation<Tr, true>(c3t3.triangulation(), points, finite_cells, border_facets, vertices, true/*verbose*/, false/*replace_domain*/);
// Check
std::cout << points.size() << " points" << std::endl;
std::cout << border_facets.size() << " border facets" << std::endl;
std::cout << finite_cells.size() << " cells" << std::endl;
std::cout << c3t3.number_of_facets() << " border facets expanded c3t3" << std::endl;
std::cout << c3t3.number_of_cells() << " cells expanded c3t3" << std::endl;
}
#ifdef CGAL_MESH_3_IO_VERBOSE
std::cerr << "done.\n";
#endif
} // namespace periodic_replicator
} // namespace CGAL
#endif // CGAL_PERIODIC_REPLICATOR_H

yaml-cpp always creates a scalar node with size 0

I'd like to use yaml-cpp for storeing some config-values. In order to get in touch with yaml-cpp, I've written a method which creates a node (_config is from Type YAML::Node), put some values in it and write it into a file:
void write_config()
{
std::ofstream fout("/home/user/config.yaml");
_config["Foo"]["0"] = "0";
_config["Foo"]["1"] = "1";
_config["Foo"]["2"] = "2";
_config["Foo"]["3"] = "3";
_config["Foo"]["4"] = "4";
_config["Foo"]["5"] = "5";
fout << _config;
}
after running this Method, a valid yaml file is created:
Foo:
1: 1
3: 3
0: 0
5: 5
4: 4
2: 2
After that, I have created a Method to read the file and print some information:
void load_config()
{
_config = YAML::Node("/home/user/config.yaml");
cout << "_config: " << _config << endl;
cout << "doc.Type(): " << _config.Type() << "\n";
cout << "doc.size(): " << _config.size() << "\n";
for (const auto& kv : _config)
{
std::cout << kv.first.as<std::string>() << "\n"; // prints Foo
std::cout << kv.second.as<std::string>() << "\n"; // prints Foo
}
}
but the output is:
_config: /home/user/config.yaml
doc.Type(): 2
doc.size(): 0
could someone tell me why the Node is empty (size == 0) and how I can read the file properly?
Thank you in advance!
I've found my Mistake...
_config = YAML::Node("/home/user/config.yaml");
should be
_config = YAML::LoadFile("/home/user/config.yaml");

What is the problem with generated SPIR-V code and how to verify it?

I have some generated SPIR-V code which I want to use with the vulkan API. But I get an
Exception thrown at 0x00007FFB68D933CB (nvoglv64.dll) in vulkanCompute.exe: 0xC0000005: Access violation reading location 0x0000000000000008. when trying to create the pipline with vkCreateComputePipelines.
The API calls should be fine, because the same code works with a shader compiled with glslangValidator. Therefore I assume that the generated SPIR-V code must be illformed somehow.
I've checked the SPIR-V code with the validator tool from khronos, using spirv-val --target-env vulkan1.1 mainV.spv which exited without error. Anyhow it is also known that this tool is still incomplete.
I've also tried to use the Radeon GPU Analyzer to compile my SPIR-V code, which is also available online at the shader playground and this tool throws the error Error: Error: internal error: Bil::BilInstructionConvert::Create(60) Code Not Tested! which is not really helpful, but encourages the assumption that the code is malformed.
The SPIR-V code is unfortunately to long to post it here, but it is in the link of the shader playground.
Does anyone know what the problem is with my setting or has any idea how I can verify my SPIR-V code in a better way, without checking all 700 lines of code manually.
I don't thinkt the problem is there, but anyway here is the c++ host code:
#include "vulkan/vulkan.hpp"
#include <iostream>
#include <fstream>
#include <vector>
#define BAIL_ON_BAD_RESULT(result) \
if (VK_SUCCESS != (result)) \
{ \
fprintf(stderr, "Failure at %u %s\n", __LINE__, __FILE__); \
exit(-1); \
}
VkResult vkGetBestComputeQueueNPH(vk::PhysicalDevice &physicalDevice, uint32_t &queueFamilyIndex)
{
auto properties = physicalDevice.getQueueFamilyProperties();
int i = 0;
for (auto prop : properties)
{
vk::QueueFlags maskedFlags = (~(vk::QueueFlagBits::eTransfer | vk::QueueFlagBits::eSparseBinding) & prop.queueFlags);
if (!(vk::QueueFlagBits::eGraphics & maskedFlags) && (vk::QueueFlagBits::eCompute & maskedFlags))
{
queueFamilyIndex = i;
return VK_SUCCESS;
}
i++;
}
i = 0;
for (auto prop : properties)
{
vk::QueueFlags maskedFlags = (~(vk::QueueFlagBits::eTransfer | vk::QueueFlagBits::eSparseBinding) & prop.queueFlags);
if (vk::QueueFlagBits::eCompute & maskedFlags)
{
queueFamilyIndex = i;
return VK_SUCCESS;
}
i++;
}
return VK_ERROR_INITIALIZATION_FAILED;
}
int main(int argc, const char *const argv[])
{
(void)argc;
(void)argv;
try
{
// initialize the vk::ApplicationInfo structure
vk::ApplicationInfo applicationInfo("VecAdd", 1, "Vulkan.hpp", 1, VK_API_VERSION_1_1);
// initialize the vk::InstanceCreateInfo
std::vector<char *> layers = {
"VK_LAYER_LUNARG_api_dump",
"VK_LAYER_KHRONOS_validation"
};
vk::InstanceCreateInfo instanceCreateInfo({}, &applicationInfo, static_cast<uint32_t>(layers.size()), layers.data());
// create a UniqueInstance
vk::UniqueInstance instance = vk::createInstanceUnique(instanceCreateInfo);
auto physicalDevices = instance->enumeratePhysicalDevices();
for (auto &physicalDevice : physicalDevices)
{
auto props = physicalDevice.getProperties();
// get the QueueFamilyProperties of the first PhysicalDevice
std::vector<vk::QueueFamilyProperties> queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
uint32_t computeQueueFamilyIndex = 0;
// get the best index into queueFamiliyProperties which supports compute and stuff
BAIL_ON_BAD_RESULT(vkGetBestComputeQueueNPH(physicalDevice, computeQueueFamilyIndex));
std::vector<char *>extensions = {"VK_EXT_external_memory_host", "VK_KHR_shader_float16_int8"};
// create a UniqueDevice
float queuePriority = 0.0f;
vk::DeviceQueueCreateInfo deviceQueueCreateInfo(vk::DeviceQueueCreateFlags(), static_cast<uint32_t>(computeQueueFamilyIndex), 1, &queuePriority);
vk::StructureChain<vk::DeviceCreateInfo, vk::PhysicalDeviceFeatures2, vk::PhysicalDeviceShaderFloat16Int8Features> createDeviceInfo = {
vk::DeviceCreateInfo(vk::DeviceCreateFlags(), 1, &deviceQueueCreateInfo, 0, nullptr, static_cast<uint32_t>(extensions.size()), extensions.data()),
vk::PhysicalDeviceFeatures2(),
vk::PhysicalDeviceShaderFloat16Int8Features()
};
createDeviceInfo.get<vk::PhysicalDeviceFeatures2>().features.setShaderInt64(true);
createDeviceInfo.get<vk::PhysicalDeviceShaderFloat16Int8Features>().setShaderInt8(true);
vk::UniqueDevice device = physicalDevice.createDeviceUnique(createDeviceInfo.get<vk::DeviceCreateInfo>());
auto memoryProperties2 = physicalDevice.getMemoryProperties2();
vk::PhysicalDeviceMemoryProperties const &memoryProperties = memoryProperties2.memoryProperties;
const int32_t bufferLength = 16384;
const uint32_t bufferSize = sizeof(int32_t) * bufferLength;
// we are going to need two buffers from this one memory
const vk::DeviceSize memorySize = bufferSize * 3;
// set memoryTypeIndex to an invalid entry in the properties.memoryTypes array
uint32_t memoryTypeIndex = VK_MAX_MEMORY_TYPES;
for (uint32_t k = 0; k < memoryProperties.memoryTypeCount; k++)
{
if ((vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent) & memoryProperties.memoryTypes[k].propertyFlags &&
(memorySize < memoryProperties.memoryHeaps[memoryProperties.memoryTypes[k].heapIndex].size))
{
memoryTypeIndex = k;
std::cout << "found memory " << memoryTypeIndex + 1 << " out of " << memoryProperties.memoryTypeCount << std::endl;
break;
}
}
BAIL_ON_BAD_RESULT(memoryTypeIndex == VK_MAX_MEMORY_TYPES ? VK_ERROR_OUT_OF_HOST_MEMORY : VK_SUCCESS);
auto memory = device->allocateMemoryUnique(vk::MemoryAllocateInfo(memorySize, memoryTypeIndex));
auto in_buffer = device->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(), bufferSize, vk::BufferUsageFlagBits::eStorageBuffer, vk::SharingMode::eExclusive));
device->bindBufferMemory(in_buffer.get(), memory.get(), 0);
// create a DescriptorSetLayout
std::vector<vk::DescriptorSetLayoutBinding> descriptorSetLayoutBinding{
{0, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute}};
vk::UniqueDescriptorSetLayout descriptorSetLayout = device->createDescriptorSetLayoutUnique(vk::DescriptorSetLayoutCreateInfo(vk::DescriptorSetLayoutCreateFlags(), static_cast<uint32_t>(descriptorSetLayoutBinding.size()), descriptorSetLayoutBinding.data()));
std::cout << "Memory bound" << std::endl;
std::ifstream myfile;
myfile.open("shaders/MainV.spv", std::ios::ate | std::ios::binary);
if (!myfile.is_open())
{
std::cout << "File not found" << std::endl;
return EXIT_FAILURE;
}
auto size = myfile.tellg();
std::vector<unsigned int> shader_spv(size / sizeof(unsigned int));
myfile.seekg(0);
myfile.read(reinterpret_cast<char *>(shader_spv.data()), size);
myfile.close();
std::cout << "Shader size: " << shader_spv.size() << std::endl;
auto shaderModule = device->createShaderModuleUnique(vk::ShaderModuleCreateInfo(vk::ShaderModuleCreateFlags(), shader_spv.size() * sizeof(unsigned int), shader_spv.data()));
// create a PipelineLayout using that DescriptorSetLayout
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), 1, &descriptorSetLayout.get()));
vk::ComputePipelineCreateInfo computePipelineInfo(
vk::PipelineCreateFlags(),
vk::PipelineShaderStageCreateInfo(
vk::PipelineShaderStageCreateFlags(),
vk::ShaderStageFlagBits::eCompute,
shaderModule.get(),
"_ZTSZZ4mainENK3$_0clERN2cl4sycl7handlerEE6VecAdd"),
pipelineLayout.get());
auto pipeline = device->createComputePipelineUnique(nullptr, computePipelineInfo);
auto descriptorPoolSize = vk::DescriptorPoolSize(vk::DescriptorType::eStorageBuffer, 2);
auto descriptorPool = device->createDescriptorPool(vk::DescriptorPoolCreateInfo(vk::DescriptorPoolCreateFlags(), 1, 1, &descriptorPoolSize));
auto commandPool = device->createCommandPoolUnique(vk::CommandPoolCreateInfo(vk::CommandPoolCreateFlags(), computeQueueFamilyIndex));
auto commandBuffer = std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool.get(), vk::CommandBufferLevel::ePrimary, 1)).front());
commandBuffer->begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlags(vk::CommandBufferUsageFlagBits::eOneTimeSubmit)));
commandBuffer->bindPipeline(vk::PipelineBindPoint::eCompute, pipeline.get());
commandBuffer->dispatch(bufferSize / sizeof(int32_t), 1, 1);
commandBuffer->end();
auto queue = device->getQueue(computeQueueFamilyIndex, 0);
vk::SubmitInfo submitInfo(0, nullptr, nullptr, 1, &commandBuffer.get(), 0, nullptr);
queue.submit(1, &submitInfo, vk::Fence());
queue.waitIdle();
printf("all done\nWoohooo!!!\n\n");
}
}
catch (vk::SystemError &err)
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit(-1);
}
catch (std::runtime_error &err)
{
std::cout << "std::runtime_error: " << err.what() << std::endl;
exit(-1);
}
catch (...)
{
std::cout << "unknown error\n";
exit(-1);
}
return EXIT_SUCCESS;
}
Well after checking out line per line it showed that the problem is when working with pointers of pointers. For me it is still not clear from the specification that it is not allowed, but it is understandable that it does not work with logical pointers.
Still the behaviour is strange that the validator is not able to note that and that compiling the SPIRV code crashes instead of throwing a clear error message.
So in the end, it was the Shader code which was wrong.

How to generate binary tree dot file for Graphviz from C++

I have implemented a Binary Search Tree in C++ which support dynamically creating and deleting nodes. To visualize the tree, I firstly tried displaying edges with / and \. However, this gives really awful visualization, as the position of / and \ needs to be calculated precisely. The current figures are as follows:
So I found a tool called Graphviz. The raw language supported by Graphviz is dot language, which I am not familiar with.
I read the documentation and found the dot language easy to write and read, but I still want to use my C++ code to generate the tree as this contains much content such as inserting according to user's input.
Is there any chance to use some function to generate the dot file?
The code of my binary tree:
//BTNode.h
#include <iostream>
using namespace std;
template<class T>
struct BTNode{
BTNode(){
lChild = rChild = NULL;
}
BTNode(const T& x){
element = x;
lChild = rChild = NULL;
}
BTNode(const T& x, BTNode<T>* l, BTNode<T>* r){
element = x;
lChild = l;
rChild = r;
}
T element;
int digit, row;
BTNode<T>* lChild, *rChild;
};
//BSTree.h
#include"ResultCode.h"
#include "BTNode.h"
#include "seqqueue.h"
#include <math.h>
template <class T>
class BSTree
{
public:
BSTree(){ root = NULL; }
ResultCode SearchByRecursion(T& x)const;
ResultCode Insert(T& x);
ResultCode Remove(T& x);
void InOrder(void(*Visit)(T& x));
ResultCode SearchByIteration(T& x);
void GradeOrder(void(*Visit)(T &x), BTNode<T> *t, int height);
BTNode<T>* root;
void printSpace(int num);
int GetHeight();
int GetHeight(BTNode<T> *t);
int **A;
private:
ResultCode SearchByRecursion(BTNode<T> *p, T& x)const;
void InOrder(void(*Visit)(T& x), BTNode<T> *t);
};
template <class T>
ResultCode BSTree<T>::SearchByRecursion(T &x)const{
return SearchByRecursion(root, x);
}
template <class T>
ResultCode BSTree<T>::SearchByRecursion(BTNode<T> *p, T& x)const{
if (!p) return NotPresent;
else if (x < p->element) return SearchByRecursion(p->lChild, x);
else if (x > p->element) return SearchByRecursion(p->rChild, x);
else{
x = p->element;
return Success;
}
}
template <class T>
ResultCode BSTree<T>::SearchByIteration(T& x){
BTNode<T> *p = root;
while (p)
if (x < p->element) p = p->lChild;
else if (x > p->element) p = p->rChild;
else{
x = p->element;
return Success;
}
return NotPresent;
}
template<class T>
ResultCode BSTree<T>::Insert(T& x){
BTNode<T> *p = root, *q = NULL;
while (p){
q = p;
if (x < p->element) p = p->lChild;
else if (x > p->element) p = p->rChild;
else { x = p->element; return Duplicate; }
}
p = new BTNode<T>(x);
if (!root) root = p;
else if (x < q->element) q->lChild = p;
else q->rChild = p;
return Success;
}
template <class T>
ResultCode BSTree<T>::Remove(T& x){
BTNode<T> *c, *s, *r, *p = root, *q = NULL;
while (p && p->element != x){
q = p;
if (x < p->element) p = p->lChild;
else p = p->rChild;
}
if (!p) return NotPresent;
x = p->element;
if (p->lChild&&p->rChild)
{
s = p->rChild;
r = p;
while (s->lChild){
r = s; s = s->lChild;
}
p->element = s->element;
p = s; q = r;
}
if (p->lChild)
c = p->lChild;
else c = p->rChild;
if (p == root)
root = c;
else if (p == q->lChild)
q->lChild = c;
else q->rChild = c;
delete p;
return Success;
}
template <class T>
void BSTree<T>::InOrder(void(*Visit)(T &x)){
InOrder(Visit, root);
}
template <class T>
void BSTree<T>::InOrder(void(*Visit)(T &x), BTNode<T> *t){
if (t){
InOrder(Visit, t->lChild);
Visit(t->element);
InOrder(Visit, t->rChild);
}
}
template <class T>
void BSTree<T>::GradeOrder(void(*Visit)(T &x), BTNode<T> *t, int height)
{
A = new int*[height];
for (int i = 0; i < height; i++){
A[i] = new int[(int)pow(2, height) - 1];
}
for (int i = 0; i < height; i++)
for (int j = 0; j < (int)pow(2, height) - 1; j++){
A[i][j] = -1;
}
SeqQueue<BTNode<T>*> OrderQueue(10);
BTNode<T> * loc = t;
loc->row = 0;
loc->digit = 0;
if (loc){
OrderQueue.EnQueue(loc);
A[loc->row][loc->digit] = loc->element;
}
while (!OrderQueue.IsEmpty())
{
OrderQueue.Front(loc);
OrderQueue.DeQueue();
if (loc->lChild)
{
A[(loc->row) + 1][2 * (loc->digit)] = loc->lChild->element;
loc->lChild->row = (loc->row) + 1;
(loc->lChild->digit) = (loc->digit) * 2;
OrderQueue.EnQueue(loc->lChild);
}
if (loc->rChild)
{
A[(loc->row) + 1][2 * (loc->digit) + 1] = loc->rChild->element;
loc->rChild->row = (loc->row) + 1;
(loc->rChild->digit) = (loc->digit) * 2 + 1;
OrderQueue.EnQueue(loc->rChild);
}
}
cout << endl;
int total = (int)(pow(2, height)) - 1;
for (int i = 0; i < height; i++){
if (i != 0){
cout << endl;
}
int space1 = (total / (int)(pow(2, i + 1)));
int space2;
if (i == 0){
space2 = 0;
}
else{
space2 = (total - 2 * space1 - (int)pow(2, i)) / (int)(pow(2, i) - 1);
}
printSpace(space1);
for (int j = 0; j < (int)pow(2, i); j++){
if (A[i][j] != -1){
cout << A[i][j];
}
else{
cout << " ";
}
printSpace(space2);
}
printSpace(space1);
cout << endl;
}
}
template <class T>
void BSTree<T>::printSpace(int num){
for (int i = 0; i < num; i++){
cout << " ";
}
}
template<class T>
int BSTree<T>::GetHeight()
{
return GetHeight(root);
}
template<class T>
int BSTree<T>::GetHeight(BTNode<T> *t)
{
if (!t)return 0;
if ((!t->lChild) && (!t->rChild)) return 1;
int lHeight = GetHeight(t->lChild);
int rHeight = GetHeight(t->rChild);
return (lHeight > rHeight ? lHeight : rHeight) + 1;
}
template <class T>
void Visit(T& x){
cout << x << " ";
}
//main.cpp
#include <iostream>
#include "BSTree4.h"
#include<Windows.h>
int getDigit(int x);
int main(){
BSTree<int> bt;
int number;
// char choice;
cout << "Welcome to BSTree System, to begin with, you need to create a tree!(Press enter to continue...)" << endl;
getchar();
cout << "Please enter the size of the Binary Search Tree:";
cin >> number;
int *ToBeInserted = new int[number];
cout << "Enter the number of each Node(size:" << number << "):";
for (int i = 0; i < number; i++){
cin >> ToBeInserted[i];
}
cout << "OK,now the tree will be created!" << endl;
for (int i = 0; i < number; i++){
cout << "Inserting Node " << i;
for (int k = 0; k < 3; k++){
cout << ".";
//Sleep(200);
}
showResultCode(bt.Insert(ToBeInserted[i]));
//Sleep(500);
}
cout << "Done." << endl;
//Sleep(500);
int height = bt.GetHeight();
bt.GradeOrder(Visit, bt.root,height);
int a;
cout << "please enter the number to search:";
cin>>a;
showResultCode(bt.SearchByRecursion(a));
bt.GradeOrder(Visit, bt.root,height);
if (bt.SearchByRecursion(a) == 7){
cout << "Now delete the number" << "..." << endl;
showResultCode(bt.Remove(a));
bt.GetHeight();
cout << "Deleted!Now the tree is:" << endl;
bt.GradeOrder(Visit, bt.root, height);
bt.InOrder(Visit);
cout << endl;
}
return 0;
}
//resultcode.h
#include<iostream>
using namespace std;
enum ResultCode{ NoMemory, OutOfBounds, Underflow, Overflow, Failure,
NotPresent, Duplicate, Success };
void showResultCode(ResultCode result)
{
int r = (int)result;
switch (result)
{
case 0:cout << "NoMemory" << endl; break;
case 1:cout << "OutOfBounds" << endl; break;
case 2:cout << "Underflow" << endl; break;
case 3:cout << "Overflow" << endl; break;
case 4:cout << "Failure" << endl; break;
case 5:cout << "NotPresent" << endl; break;
case 6:cout << "Duplicate" << endl; break;
case 7:cout << "Success" << endl; break;
default: cout << "Exception occured:unknown resultcode" << endl;
}
}
Update: I have solved the problem myself, check the answer below.
The key elements in dot language file in this problem are nodes and edges. Basically the dot file structure for a binary tree would be like the following:
digraph g {
//all the nodes
node0[label="<f0>|<f1> value |<f2>"]
node1[label="<f0>|<f1> value |<f2>"]
node2[label="<f0>|<f1> value |<f2>"]
...
//all the edges
"node0":f2->"node4":f1;
"node0":f0->"node1":f1;
"node1":f0->"node2":f1;
"node1":f2->"node3":f1;
...
}
The following output of the dot file can be used to understand the structure:
Explanation for the dot file:
For the node part node0[label="<f0>|<f1> value |<f2>"] means the node called node0 has three parts: <f0> is the left part, <f1> is the middle part with a value, <f2> is the right part. This just corresponds to leftchild, value and rightchild in a binary node.
For the edges part, "node0":f2->"node4":f1; means the right part of node0(i.e.<f2>) points to the middle part of node4 (i.e. <f1>).
Therefore, the way to generate the dot file is simply through a traverse of a binary tree. Any method is fine. (BFS,DFS...) All we need is to add the code to write the nodes and corresponding edges into file when we do the traverse. I personally used BFS with level order traverse of a binary tree to implement which is shown below as a function called showTree.
void showTree(BSTree<int> &bst,int total,int *Inserted){
char filename[] = "D:\\a.gv"; // filename
ofstream fout(filename);
fout << "digraph g{" << endl;
fout << "node [shape = record,height = .1];" << endl;
SeqQueue<BTNode<int>*> OrderQueue(1000);
BTNode<int> * loc = bst.root;
loc->row = 0;
loc->digit = 0;
int num = 0;
if (loc){
OrderQueue.EnQueue(loc);
loc->ID = num++;
fout << " node" << loc->ID << "[label = \"<f0> |<f1>" << loc->element << "|<f2>\"];" << endl;
}
while (!OrderQueue.IsEmpty())
{
OrderQueue.Front(loc);
OrderQueue.DeQueue();
if (loc->lChild)
{
loc->lChild->row = (loc->row) + 1;
(loc->lChild->digit) = (loc->digit) * 2;
OrderQueue.EnQueue(loc->lChild);
loc->lChild ->ID= (num++);
fout << " node" << loc->lChild->ID << "[label = \"<f0> |<f1>" << loc->lChild->element << "|<f2>\"];" << endl;
//cout << loc->ID;
}
if (loc->rChild)
{
loc->rChild->row = (loc->row) + 1;
(loc->rChild->digit) = (loc->digit) * 2 + 1;
OrderQueue.EnQueue(loc->rChild);
loc->rChild->ID = (num++);
fout << " node" << loc->rChild->ID << "[label = \"<f0> |<f1>" << loc->rChild->element << "|<f2>\"];" << endl;
//cout << loc->ID;
}
}
//begin to draw!
SeqQueue<BTNode<int>*> OrderQueue2(1000);
BTNode<int> * loc2 = bst.root;
loc2->row = 0;
loc2->digit = 0;
if (loc2){
OrderQueue2.EnQueue(loc2);
}
while (!OrderQueue2.IsEmpty())
{
OrderQueue2.Front(loc2);
OrderQueue2.DeQueue();
if (loc2->lChild)
{
loc2->lChild->row = (loc2->row) + 1;
(loc2->lChild->digit) = (loc2->digit) * 2;
OrderQueue2.EnQueue(loc2->lChild);
cout << "\"node" << loc2->ID << "\":f0->\"node" << loc2->lChild->ID << "\":f1;" << endl;
cout << loc2->lChild->element << endl;
fout << "\"node" << loc2->ID << "\":f0->\"node" << loc2->lChild->ID << "\":f1;" << endl;
}
if (loc2->rChild)
{
loc2->rChild->row = (loc2->row) + 1;
(loc2->rChild->digit) = (loc2->digit) * 2 + 1;
OrderQueue2.EnQueue(loc2->rChild);
cout << "\"node" << loc2->ID << "\":f2->\"node" << loc2->rChild->ID << "\":f1;" << endl;
cout << loc2->rChild->element << endl;
fout << "\"node" << loc2->ID << "\":f2->\"node" << loc2->rChild->ID << "\":f1;" << endl;
}
}
fout << "}" << endl;
}
And the final output:

where is boost property_tree::empty_ptree?

I'm using boots's property_tree library. I'm looking for a way to get a child node from a ptree object, but return an empty ptree if failed. I came across a nice example in property_tree/examples/empty_ptree_trick.cpp:
void process_settings(const std::string &filename)
{
ptree pt;
read_info(filename, pt);
const ptree &settings = pt.get_child("settings", empty_ptree<ptree>());
std::cout << "\n Processing " << filename << std::endl;
std::cout << " Setting 1 is " << settings.get("setting1", 0) << std::endl;
std::cout << " Setting 2 is " << settings.get("setting2", 0.0) << std::endl;
std::cout << " Setting 3 is " << settings.get("setting3", "default") << std::endl;
}
which does exactly what I need. The problem is that the compiler complains that empty_ptree() function is not a member of boost:property_tree. Any ideas where empty_ptree() is?
I'm using boost 1.44 on VS2010.
I have just blown a full day trying to answer that question!
This was my solution. Firstly I used pointers, and not references as you have to initialize them immediately. Then I just caught the exception and added a new ptree.
using namespace boost::property_tree;
ptree r_pt;
ptree *c_pt;
read_xml( "file.xml" , r_pt);
try {
c_pt = &(r_pt.get_child( "example" ));
}
catch (ptree_bad_path) {
c_pt = &(r_pt.put_child( "example", ptree() ));
}
std::cout << "Setting 1 is " << c_pt.get("setting1", 0) << std::endl;
From what I could pick up they expect us to use the boost::optional type. But I'm just a beginner..
EDIT
I just found the implementation of empty_ptree<>.
template<class Ptree>
inline const Ptree &empty_ptree()
{
static Ptree pt;
return pt;
}
I think you can just add this to your code and use it as described in the empty_ptree_trick.cpp, but I am sticking with my solution for now untill I find out how its actually supposed to be done.
void process_settings(const std::string &filename)
{
ptree pt;
read_info(filename, pt);
const ptree &settings = pt.get_child("settings", ptree());
std::cout << "\n Processing " << filename << std::endl;
std::cout << " Setting 1 is " << settings.get("setting1", 0) << std::endl;
std::cout << " Setting 2 is " << settings.get("setting2", 0.0) << std::endl;
std::cout << " Setting 3 is " << settings.get("setting3", "default") << std::endl;
}
Note, that will prevent throwing an instance of 'boost::wrapexceptboost::property_tree::ptree_bad_path'