Cocoa atomic properties and autorelease - objective-c

If I have an an atomic property in MyClass:
#property (readwrite, strong) NSMutableArray *atomicArray;
And a thread calls something like:
NSMutableArray* t = [myClassObject atomicArray];
Where is it documented that the object I get back is retained/autoreleased so that another thread can't call:
[myClassObject setAtomicArray:otherArray] and eliminate the object out from under me?
Another question mentioned this is true but without reference to any documentation from Apple.
Atomic properties vs thread-safe in Objective-C

See The Objective-C Programming Language, Property Declaration Attributes, Atomicity:
If you specify strong, copy, or retain and do not specify nonatomic, then in a reference-counted environment, a synthesized get accessor for an object property uses a lock and retains and autoreleases the returned value—the implementation will be similar to the following:
[_internal lock]; // lock using an object-level lock
id result = [[value retain] autorelease];
[_internal unlock];
return result;
If you specify nonatomic, a synthesized accessor for an object property simply returns the value directly.

Assuming you are using ARC, the reference obtained in t is a strong one to the object that existed at the time you retrieved it. If some other thread replaces the object, t would still reference the original object, and that object would stick around until t goes out of scope.
However t being a mutable array, some other thread could get its own reference and modify the mutable array itself by adding and removing objects. Those changes would be visible to your t, because it is the same object.
That is important, because if you try to iterate over the array while some other thread modifies it, you may encounter all kinds of unexpected results. Depending on your Xcode version it might produces warnings during compile and/or runtime to help identify those scenarios. One pattern to avoid the array changing from under you is to create an immutable copy, like NSArray *immutableT=[t copy]. This produces a shallow copy of the array that is immune to changes to the original mutable array, so you can safely iterate over immutableT.

This is a helpful hint, but can you try using Memory Graph Debugger feature of Xcode. Working on strong attributes with multi-threading is always a tedious task.
Memory graph debugger is an excellent tool to find out retain count, who is holding a strong reference of an object, etc.. It helps a lot if you play around with it.

Related

Objective-C Mutable property, copy retain, etc?

When I declare a property for an interface that is Mutable should I always make it (nonatomic, copy)? Also when would I used assign instead of retain?
Use nonatomic when you care more about performance than thread safety. Atomic properties are thread safe but slower. The default behaviour is atomic.
Use copy when you want a copy to be made whenever a new value is set to the property. Note that in many cases, copy will not actually make a copy of the object, so this usually has no performance impact but can solve bugs if somebody gives you a mutable copy (eg, you have an NSString property and somebody assigns an NSMutableString.
Do not ever use retain or strong as these are only needed when ARC is turned off, and you should always have ARC turned on. strong and retain are the same, and this is the default behaviour with ARC enabled. Just turn ARC on and ignore these ones, except for backwards compatible code.
Sometimes, for example delegate properties, using retain or strong would create a memory leak. In these situtaions you need to use weak or assign. In general, you should use weak, as assign can have rare edge case bugs.
Normally you #synthesize a property in your class implementation which creates a set function. You can write your own property set function, and do a mutable copy there. Problem solved...
- (void)setPropertyName:(propertyType *)newProperty {
if (propertyName) [propertyName release];
propertyName = [newProperty mutableCopy];
}

Conflict between memory management descriptions in ObjC book and official docs

I'm trying to learn/understand what happens and why when working with or creating various objects. (Hopefully to LEARN from the docs.)
I'm reading "Programming in Objective-C 2.0" (2nd edition, by Steven Kochan). On page 408, in the first paragraph is a discussion of retain counts:
Note that its reference count then goes to 2. The addObject: method does this automatically; if you check your documentation for the addObject: method, you will see this fact described there.
So I read the addObject: docs:
Inserts a given object at the end of the array.
There, the description is missing, while other items, like arrayByAddingObject:, state it:
Returns a new array that is a copy of the receiving array with a given object added to the end.
Where in the reference does it indicate that addObject: increases the retain count? Given the presence of ARC, I should still understand what these methods are doing to avoid bugs and issues. What does ARC bring to this? (Going to read that again...)
Great question, I'm glad to see someone actually reading the docs and trying to understand them!
Since you are looking for how to research answers using Apple's documentation more so than the actual answer itself, here is how I found the answer:
First I look at the class reference for addObject: which is a method of NSMutableArray and there is no mention of memory management.
Then I look at the Overview section at the top... Hmmm, still no luck.
Since the behavior might be inherited from a parent class, I look at the Inherits from section at the top of the class reference and see that NSArray is the most immediate parent. Let's check there:
Under the Overview There is one small section about retain's:
Special Considerations
In most cases your custom NSArray class should conform to Cocoa’s
object-ownership conventions. Thus you must send retain to each object
that you add to your collection and release to each object that you
remove from the collection. Of course, if the reason for subclassing
NSArray is to implement object-retention behavior different from the
norm (for example, a non-retaining array), then you can ignore this
requirement.
Okay, I'm still not happy... Where next? The parent class of NSArray is NSObject and I know that it won't be covered there in this case (from experience) so I won't bother checking that. (If the parent was another class or something that might be covered by NSObject, I would keep moving up the tree until I found something.)
The Companion Guides usually contains a lot of good information for these types of classes. Let's try the first one, Collections Programming Topics.
The first section (after Overview) is Accessing Indexes and Easily Enumerating Elements: Arrays. Sounds promising! Click on Relevant Chapters: “Arrays: Ordered Collections”
There it is under Array Fundamentals along with a link to even more information:
And when you add an object to an NSMutableArray object, the object
isn’t copied, (unless you pass YES as the argument to
initWithArray:copyItems:). Rather, an object is added directly to an
array. In a managed memory environment, an object receives a retain
message when it’s added; in a garbage collected environment, it is
strongly referenced. When an array is deallocated in a managed memory
environment, each element is sent a release message. For more
information on copying and memory management, see “Copying
Collections.”
The book must be referring to out of date documentation because you are correct it doesn't mention anything about the retain count. It does in fact retain the object though. The way you need to think of it is not in terms of retain counts (which are useless) but rather ownership. Especially so when using ARC.
When you add an object to an NSMutableArray, it is taking ownership of that object (in ARC terminology it has a strong reference to it).
"What does ARC bring to this?"
ARC does nothing different. All ARC does (besides some optimization) is add the same release, retain, and autorelease statements that you would add yourself without using ARC. All you need to care about is that once you add an object to the array, it will live at least as long as the array.
And the arrayByAddingObject: method creates a new NSArray (or NSMutableArray) containing the object you're passing, and keeps a strong reference to the passed object. The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan.
Basically even without ARC, it's best to think of object life-cycles in terms of ownership, ARC just formalizes that. So because of that, when using the frameworks, it doesn't matter when retains happen or don't happen, you are only responsible for your objects until you pass ownership to another object and you can trust that the framework will keep the object alive as long as it needs it.
Now of course you have to intuit what constitutes ownership. For instance delegate properties are often assign, or in ARC unsafe_unretained or weak, to prevent circular retains cycles (where two objects each retain each other), though are sometimes retained/strong so you need to look into those on a case by case basis.
And also in cases like key value observing and NSNotification observing the object you are observing does not retain the observer.
But those are really exceptions to the rule. Generally you can assume a strong reference.
Regarding this sentence above: "The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan." I'll try to explain:
When you run this piece of code: [someArray arrayByAddingObject:someObject]; you've instantiated a new NSArray or NSMutableArray object (depending on which object type someArray is) but you haven't actually assigned it to any reference. That means that if you're using ARC, it may be immediately released afterwards, or if not using ARC, it will be released when it's autoreleasepool is drained (probably on the next iteration of that thread's runloop).
Now if instead you did this: NSArray *someOtherArray = [someArray arrayByAddingObject:someObject]; you now have a reference to the newly created array, called someOtherArray. In this case, this is a local variable who's scope is only within whichever set of { } it resides (so it could be inside an if statement, a loop, or a method. Now if you do nothing else with it, it will die sometime after it's scope ends (it isn't guaranteed to die right away, but that isn't important, you just can't assume it lives longer).
Now if in your class you have an iVar (instance variable) declared in the header like NSArray *someOtherArray; (which is strong by default in ARC) and you run someOtherArray = [someArray arrayByAddingObject:someObject]; somewhere in your class, the object will live until you either remove the reference (someOtherArray = nil), you overwrite the reference (someOtherArray = someThirdArray), or the class is deallocated. If you were not using ARC, you would have to make sure to retain that to achieve the same effect (someOtherArray = [[someArray arrayByAddingObject:someObject] retain]; which is essentially what ARC is doing behind the scenes).
Or you may have a property declared instead like #property (nonatomic, strong) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would achieve the same effect but would use the proprety accessor (setSomeOtherArray:) or you could still use someOtherArray = [someArray arrayByAddingObject:someObject]; to set the iVar directly (assuming you #synthesized it).
Or assuming non-ARC, you might have declared the property like #property (nonatomic, retain) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would behave exactly as ARC would, but when setting the iVar directly you would still need to add that retain manually.
I hope that clears things up a bit, please let me know if there's anything I glossed over or left out.
As you mentioned in your comment, the key here is intuitively knowing when an object would be considered owned by another one or not. Luckily, the Cocoa frameworks follow a pretty strict set of conventions that allow you to make safe assumptions:
When setting an NSString property of a framework object (say the text property of a UILabel for example) it is always copied (if anyone knows of a counter-example, please comment or edit). So you don't have to worry about your string once you pass it. Strings are copied to prevent a mutable string from being changed after it's passed.
When setting any other property other than delegate, it's (almost?) always retained (or strong reference in ARC)
When setting delegate properties, it's (almost?) always an assign (or weak reference) to prevent circular retain cycles. (For instance, object a has a property b that is strong referenced and b has a strong referenced delegate property. You set a as the delegate for b. Now a and b are both strongly referencing each other, and neither object will ever reach a retain count of 0 and will never reach it's dealloc method to dealloc the other object. NSURLConnection is a counter-example that does strongly reference it's delegate, because it's delegate is set via a method -- see that convention below -- and it's convention to nil out or release an NSURLConnection after it completes rather than in dealloc, which will remove the circular retain)
When adding to an array or dictionary, it's always retained (or strong reference).
When calling a method and passing block(s), they are always copied to move them from the stack (where they are initially created for performance purposes) into the heap.
Methods that take in object parameters and don't return a result immediately are (always? I can't think of any that don't) either copying or retaining (strong referencing) the parameters that you pass to ensure that the method can do what it needs to with them. For instance, NSURLConnection even retains it's delegate because it's passed in via a method, whereas when setting the delegate property of other objects will not retain, as that is the convention.
It's suggested that you follow these same conventions in your own classes as well for consistency.
Also, don't forget that the headers of all classes are available to you, so you can easily see whether a property is retain or assign (or strong or weak). You can't check what methods do with their parameters, but there's no need because of the convention that parameters are owned by the receiver.
In general, you should look in the "most global" spot for information about anything in the Cocoa APIs. Since memory management is pervasive across the system APIs and the APIs are consistent in their implementation of the Cocoa memory management policy, you simply need to read and understand the Cocoa memory management guide.
Once understood, you can safely assume that all system APIs implement to that memory management policy unless explicitly documented otherwise.
Thus, for NSMutableArray's addObject: method, it would have to retain the object added to the array or else it would be in violation of that standard policy.
You'll see this throughout the documentation. This prevents every method's documentation from being a page or more long and it makes it obvious when the rare method or class implements something that is, for whatever reason (sometimes not so good), an exception to the rule.
In the "Basic Memory Management Rules" section of the memory management guide:
You can take ownership of an object using retain.
A received object is normally guaranteed to remain valid within the
method it was received in, and that method may also safely return the
object to its invoker. You use retain in two situations: (1) In the
implementation of an accessor method or an init method, to take
ownership of an object you want to store as a property value; and (2)
To prevent an object from being invalidated as a side-effect of some
other operation (as explained in “Avoid Causing Deallocation of
Objects You’re Using”).
(2) is the key; an NS{Mutable}Array must retain any added object(s) exactly because it needs to prevent the added object(s) from being invalidated due to some side-effect. To not do so would be divergent from the above rule and, thus, would be explicitly documented.

Clarification on custom init methods / pointers in general for objective c objects

When I have my own init method with synthesized properties as such:
#property (copy, nonatomic) NSString *bookName;
#property (strong, nonatomic) NSMutableArray *book;
When I want to initialize with my own custom initializer I am shown to write it like this:
-(id) initWithName: (NSString *)name
{
self = [super init]
if (self) {
bookName = [NSString stringWithString: name];
book = [NSMutableArray array];
}
return self;
}
Now I want to clarify something. I know why it uses the stringWithString method, because instead of just passing the address to the passed in string it'll create a new object so that it owns the string itself. Could I not also just write it like so:
self.bookName = name;
Doing this should use the synthesized method and actually create a new object right? Basically both accomplish the same thing. I ask because there are methods else where that show doing it both ways so I just want to make sure there are no other issues that could crop up with using one way or the other. They both appear to do the same thing in different ways (using the synthesized method vs directly modifying the class variable but creating a new object in memory for it).
I'll also point out that this is in an ARC environment.
(Note that I am assuming the above is ARC code; otherwise it is incorrect.)
You should almost always use accessors to access your ivars (even in ARC). However, there is some controversy about whether init should use accessors or directly access its ivars. I have switched sides in this controversy, but it's not an obvious decision IMO.
The primary argument for not allowing init to use accessors is that it is possible that a future (unknown) subclass might create side-effects in the accessor. You generally don't want side effects happening during your init. For instance, you probably don't want to post change notifications when you're setting something to its initial value, and it is possible that your object is in an "undefined state" and would be dangerous to read at this point.
That said, and while this argument did finally sway me, I have never once encountered this situation on numerous projects of various sizes with several teams. I have many times encountered developers failing to retain when setting their ivars in init (as you have done above, and which would crash if it is not ARC). This is why for a long time I recommended using accessors even in init. But in theory it does create a danger, particularly if you are a closed-source framework writer (i.e. Apple). And so, for my own code I now avoid accessors in init. If I were working with a more junior teams on older retain/release code, I would probably still have them use accessors in init. It's just avoided so many crashes in my experience.
It is not controversial that you should avoid calling accessors in dealloc, however. This definitely can lead to bizarre side-effects in the middle of destroying your object.
You are correct, since bookName is declared as copy, assigning self.bookName would make a copy of the string passed in. I am not certain that copying would go through exactly the same code path as the [NSString stringWithString: name], but it would achieve the same purpose of creating a copy of the original string, shielding you from unexpected consequences of users passing in a mutable object and mutating its value behind your back.
Because the declared property is copy then yes, they are doing the same thing.
Many times however, it is a strong and then there would be a difference between the two methods so the first method would be the "correct" way of doing it.

Objective-C declared #property attributes (nonatomic, copy, strong, weak)

Can someone explain to me in detail when I must use each attribute: nonatomic, copy, strong, weak, and so on, for a declared property, and explain what each does? Some sort of example would be great also. I am using ARC.
Nonatomic
Nonatomic will not generate threadsafe routines thru #synthesize accessors. atomic will generate threadsafe accessors so atomic variables are threadsafe (can be accessed from multiple threads without botching of data)
Copy
copy is required when the object is mutable. Use this if you need the value of the object as it is at this moment, and you don't want that value to reflect any changes made by other owners of the object. You will need to release the object when you are finished with it because you are retaining the copy.
Assign
Assign is somewhat the opposite to copy. When calling the getter of an assign property, it returns a reference to the actual data. Typically you use this attribute when you have a property of primitive type (float, int, BOOL...)
Retain
retain is required when the attribute is a pointer to a reference counted object that was allocated on the heap. Allocation should look something like:
NSObject* obj = [[NSObject alloc] init]; // ref counted var
The setter generated by #synthesize will add a reference count to the object when it is copied so the underlying object is not autodestroyed if the original copy goes out of scope.
You will need to release the object when you are finished with it. #propertys using retain will increase the reference count and occupy memory in the autorelease pool.
Strong
strong is a replacement for the retain attribute, as part of Objective-C Automated Reference Counting (ARC). In non-ARC code it's just a synonym for retain.
This is a good website to learn about strong and weak for iOS 5.
http://www.raywenderlich.com/5677/beginning-arc-in-ios-5-part-1
Weak
weak is similar to strong except that it won't increase the reference count by 1. It does not become an owner of that object but just holds a reference to it. If the object's reference count drops to 0, even though you may still be pointing to it here, it will be deallocated from memory.
The above link contain both Good information regarding Weak and Strong.
nonatomic property means #synthesized methods are not going to be generated threadsafe -- but this is much faster than the atomic property since extra checks are eliminated.
strong is used with ARC and it basically helps you , by not having to worry about the retain count of an object. ARC automatically releases it for you when you are done with it.Using the keyword strong means that you own the object.
weak ownership means that you don't own it and it just keeps track of the object till the object it was assigned to stays , as soon as the second object is released it loses is value. For eg. obj.a=objectB; is used and a has weak property , than its value will only be valid till objectB remains in memory.
copy property is very well explained here
strong,weak,retain,copy,assign are mutually exclusive so you can't use them on one single object... read the "Declared Properties " section
hoping this helps you out a bit...
This link has the break down
http://clang.llvm.org/docs/AutomaticReferenceCounting.html#ownership.spelling.property
assign implies __unsafe_unretained ownership.
copy implies __strong ownership, as well as the usual behavior of copy
semantics on the setter.
retain implies __strong ownership.
strong implies __strong ownership.
unsafe_unretained implies __unsafe_unretained ownership.
weak implies __weak ownership.
Great answers!
One thing that I would like to clarify deeper is nonatomic/atomic.
The user should understand that this property - "atomicity" spreads only on the attribute's reference and not on it's contents.
I.e. atomic will guarantee the user atomicity for reading/setting the pointer and only the pointer to the attribute.
For example:
#interface MyClass: NSObject
#property (atomic, strong) NSDictionary *dict;
...
In this case it is guaranteed that the pointer to the dict will be read/set in the atomic manner by different threads.
BUT the dict itself (the dictionary dict pointing to) is still thread unsafe, i.e. all read/add operations to the dictionary are still thread unsafe.
If you need thread safe collection you either have bad architecture (more often) OR real requirement (more rare).
If it is "real requirement" - you should either find good&tested thread safe collection component OR be prepared for trials and tribulations writing your own one.
It latter case look at "lock-free", "wait-free" paradigms. Looks like rocket-science at a first glance, but could help you achieving fantastic performance in comparison to "usual locking".

Does stringWithFormat create a retain +1 instance?

I'm declaring an ivar of type NSString on a class. To initialize the value of this ivar I use the following code:
NSString *myVar;
-(void)inAnyMethod
{
myVar = [NSString stringWithFormat:#"%#",theValue];
}
Do I have to release this ivar? According to my understanding, it is not my responsibility. But in most cases, strings that I use in this manner cause leaks.
What am I missing?
You do not have to release it, because that is a convenience method that returns an autoreleased object.
The way to know if you are getting something with a retain count of 1 that you will need to release is using the Cocoa naming conventions which say that anything that starts with new, alloc or contains copy in the method name will return a retain 1 object, the others will return autoreleased objects like in this case.
In addition to Oscar Gomez answer, note that when you use class methods (those methods with plus sign that you can find in the documentation and are not included in Oscar Gomez list, e.g. stringWithFormat is one of them), you have not to worry about memory management. If you create your own class method, you should do the same: return an autorelease object.
Regarding your code, it cannot work if you simply assign your ivar to the NSString object (returned from that method). In fact, at some point of your application cycle, the object will be released (it has been put in a pool) and your ivar will not reference any object anymore.
The trick: create a #property with a copy policy or send a copy message like the following:
myVar = [[NSString stringWithFormat:#"%#",theValue] copy];
Copy is normally used when a class has subclasses of mutable type. Otherwise use retain. Once done, you have the possession for that object and you have to remember to release it. If you don't do it you cause a leak.
[myVar release];
P.S. Since Xcode 4.2 there is a new compiler feature called ARC.
Hope it helps.