I had already done several projects using simple freertos ideas: led, button. Implementing semaphores, queues or some interrupt. I can't run this simple code tough.
#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
#include "driver/gpio.h"
#define BLINK_GPIO 21 //2
#define BUTTON_GPIO 0
void task_blink(void *pvParameters);
void task_botao(void *pvParameters);
//void wd_off_task(void *pvParameters);
SemaphoreHandle_t sem_sinc;
void app_main(void)
{
gpio_pad_select_gpio(BLINK_GPIO); // Configura o pino como IO
gpio_set_direction(BLINK_GPIO,GPIO_MODE_OUTPUT); // Configura o IO como saida
gpio_pad_select_gpio(BUTTON_GPIO); // Configura o pino como IO
gpio_set_direction(BUTTON_GPIO,GPIO_MODE_INPUT); // Configura o IO como entrada
vSemaphoreCreateBinary(sem_sinc); // Cria o Semaforo
xSemaphoreTake(sem_sinc,0); // Garante que inicializa com 0
xTaskCreate(task_blink,"Task Blink",1024,NULL,2,NULL);
printf("Task Blink Criada!!!\r\n");
xTaskCreate(task_botao,"Task Botao",1024,NULL,2,NULL);
printf("Task Botao Criada!!!\r\n");
//xTaskCreate(wd_off_task,"Task desliga WD",1024,NULL,1,NULL);
}
void task_botao(void *pvParameters)
{
while(1)
{
if(gpio_get_level(BUTTON_GPIO) == 0)
{
while(gpio_get_level(BUTTON_GPIO) == 0){}
printf("Botao Pressionado!!!\r\n");
xSemaphoreGive(sem_sinc);
vTaskDelay(1);
}
}
}
void task_blink(void *pvParameters)
{
while(1)
{
if(xSemaphoreTake(sem_sinc,portMAX_DELAY)==pdTRUE)
{
printf("Pisca Led!!!\r\n");
if((gpio_get_level(BUTTON_GPIO) == 0))
gpio_set_level(BLINK_GPIO, 1);
else
gpio_set_level(BLINK_GPIO, 0);
}
}
}
The issue:
The code is built nicely, and the same for the flashing to ESP. As I press the button, it shows in the terminal the designed messages. See, the only problem here lies on I can't set the LED's level, toggling it! Because of this, all I can get is the LED turning on and turning off afterwards quickly(every time the semaphore syncronizes the 2 tasks).
I suspect it's all about some kind of config, related to this GPIO. (Although I'm using the reset port to read the button, I still think this is not the matter, because the port was properly configured on the lines above)
Your switch polling needs to detect transitions, but avoid erroneously detecting switch bounce as a valid transition. For example:
#define BUTTON_DN = 0 ;
#define BUTTON_UP = 1 ;
#define POLL_DELAY = 50 ;
void task_botao(void *pvParameters)
{
int button_state = gpio_get_level( BUTTON_GPIO ) ;
for(;;)
{
int input_state = gpio_get_level( BUTTON_GPIO ) ;
// If button pressed...
if( input_state == BUTTON_DN &&
button_state != BUTTON_UP )
{
button_state = BUTTON_DN ;
// Signal button press event.
xSemaphoreGive(sem_sinc ) ;
}
// otherwise if button released...
else if( input_state == BUTTON_UP &&
button_state != BUTTON_DN )
{
button_state = BUTTON_UP ;
}
// Delay to yield processor and
// avoid switch bounce on transitions
vTaskDelay( POLL_DELAY );
}
}
The blinking task need not be reading the button input at all; not is it unnecessary, it is also a bad design:
void task_blink(void *pvParameters)
{
int led_state = 0 ;
gpio_set_level( BLINK_GPIO, led_state ) ;
for(;;)
{
if( xSemaphoreTake( sem_sinc, portMAX_DELAY ) == pdTRUE )
{
led_state = !led_state ;
gpio_set_level( BLINK_GPIO, led_state ) ;
}
}
}
There are some things to consider. Your thinking is logical, but there are some issues.
A button is a mechanical device and while you press it, you think it will be a straightforward 0 instead of 1 it’s not. If you have an oscilloscope, I recommend you to check the voltage level on the gpio input. Or google button bounce. And floating pins. Those two concepts should be clear. The processor is very straightforward in interpreting the values.
Example: https://hackaday.com/wp-content/uploads/2015/11/debounce_bouncing.png
Now your functions are in fact constantly checking the button status, somehow at the cost of processor time. For small projects not of an issue, but when they get bigger they are.
What you want to do is to setup an interrupt to the button status: at the moment the level changes it will fire some code. And it doesn’t have to double check the gpio status in two tasks, with the chance it will miss the status in the second (because of delays). It’s important to realize you are checking the same level twice now.
Not a problem now but maybe later: the stack size of the tasks is somehow small, make it a good use to always check if it’s enough by checking the current free size. Vague problems arise if it’s not.
Related
Eve guys,see, I took a shot developing this code. It's about a morse code encoder. I started from the beggining. This part that Ill show yall, I just copyied a documentation I took somewhere on internet.
I had a doubt and an request. I ask if u guy could (if it existed) an alternative way (more exploring hardware) for eencoding the morse code. And here goes the doubt, why the interrupt negative sensibility works better here? I found it very awkard when i changed it for POSEDGE, and realized that the proposal didnt work at all. ( the dashs rarely were captured).
Thats all. I Appreciate the help beforehand
#define BLINK_GPIO 21 //2
#define BUTTON_GPIO 0
#define ESP_INTR_FLAG_DEFAULT 0
#define DASH_PRD pdMS_TO_TICKS(200)
#define INTC_PRD pdMS_TO_TICKS(1000)
char morse[6];
uint8_t cnt = 0;
TimerHandle_t xOneShotTimerDASH;// handle para o SoftTimer
BaseType_t xDASHTimerStarted, xINTCTimerStarted; // flag para checar timer
static void timerDASH_callback(void *pvParameters);
//static void timerINTC_callback(void *pvParameters);
static void IRAM_ATTR gpio_isr_handler(void* arg)
{
xDASHTimerStarted = xTimerStart(xOneShotTimerDASH, 0);
// xINTCTimerStarted = xTimerStart(xOneShotTimerINTC, 0);
}
void app_main(void)
{
gpio_pad_select_gpio(BLINK_GPIO); // Configura o pino como IO
gpio_set_direction(BLINK_GPIO,GPIO_MODE_OUTPUT); // Configura o IO como saida
gpio_pad_select_gpio(BUTTON_GPIO); // Configura o pino como IO
gpio_set_direction(BUTTON_GPIO,GPIO_MODE_INPUT); // Configura o IO como entrada
gpio_set_intr_type(BUTTON_GPIO,GPIO_INTR_POSEDGE);
gpio_intr_enable(BUTTON_GPIO);
gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT);
gpio_isr_handler_add(BUTTON_GPIO, gpio_isr_handler, (void*) BUTTON_GPIO);
ESP_LOGI("STARTUP","ISR Handler Instalado!!!");
/* Create the one shot timer, storing the handle to the created timer in xOneShotTimer. */
xOneShotTimerDASH = xTimerCreate("OneShot", DASH_PRD, pdFALSE, 0, timerDASH_callback);
ESP_LOGI("STARTUP","DASH Timer Criado!!!");
/* Create the one shot timer, storing the handle to the created timer in xOneShotTimer. */
//xOneShotTimerINTC = xTimerCreate("OneShot", INTC_PRD, pdFALSE, 0, timerINTC_callback);
ESP_LOGI("STARTUP","DASH Timer Criado!!!");
}
static void timerDASH_callback(void *pvParameters)
{
if(gpio_get_level(BUTTON_GPIO))
{
ESP_LOGI("MORSE",".");
morse[cnt++] = '.';
}
else
{
ESP_LOGI("MORSE","_");
morse[cnt++] = '_';
}
}
I am using a NUCLEO-L476RG development board,
I am learning to write GPIO drivers for STM32 family
I have implementing a simple logic in which I need to turn on an LED when a push button is pressed.
I have a strange issue:
Edit 1:The Bread board LED turns ON when the line temp=10 is commented, it doesn't turn ON when the delay issue called. Assuming if I add any line of code into that while loop the LED does not turn ON
The Bread board LED turns ON when the delay() function is commented, it doesn't turn ON when the delay issue called.
What could be the issue?
I have powered the board using the mini usb connector on the board, and the clock is configured at MSI with 4MHz
#define delay() for(uint32_t i=0; i<=50000; i++);
int main(void)
{
GPIO_Handle_t NucleoUserLED,NucleoUserPB,BreadBoardLED,BreadBoardPB;
uint8_t inputVal,BBinpVal;
uint32_t temp;
//User green led in the nucleo board connected to PA5
NucleoUserLED.pGPIO = GPIOA;
NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinNumber = GPIO_PIN_5;
NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinMode = GPIO_MODE_OP;
NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinPuPdControl = GPIO_IP_NO_PUPD;
NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinOpType = GPIO_OP_TYPE_PP;
//User blue button in the nucleo connected to PC13
NucleoUserPB.pGPIO = GPIOC;
NucleoUserPB.GPIO_Pin_Cfg.GPIO_PinNumber = GPIO_PIN_13;
NucleoUserPB.GPIO_Pin_Cfg.GPIO_PinMode = GPIO_MODE_IP;
NucleoUserPB.GPIO_Pin_Cfg.GPIO_PinPuPdControl = GPIO_IP_NO_PUPD;
//User led in the bread board connected to PC8
BreadBoardLED.pGPIO = GPIOC;
BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinNumber = GPIO_PIN_8;
BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinMode = GPIO_MODE_OP;
BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinPuPdControl = GPIO_IP_NO_PUPD;
BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinOpType = GPIO_OP_TYPE_PP;
//User DPDT connected in the breadboard connected to PC6
BreadBoardPB.pGPIO = GPIOC;
BreadBoardPB.GPIO_Pin_Cfg.GPIO_PinNumber = GPIO_PIN_6;
BreadBoardPB.GPIO_Pin_Cfg.GPIO_PinMode = GPIO_MODE_IP;
BreadBoardPB.GPIO_Pin_Cfg.GPIO_PinPuPdControl = GPIO_IP_PU;
GPIO_PeriClkCtrl(GPIOA, ENABLE);
GPIO_PeriClkCtrl(GPIOC, ENABLE);
GPIO_Init(&NucleoUserLED);
GPIO_Init(&NucleoUserPB);
GPIO_Init(&BreadBoardLED);
GPIO_Init(&BreadBoardPB);
while(1)
{
/*****************************************************************
* Controlling the IO present in the nucleo board *
*****************************************************************/
inputVal = GPIO_ReadInputPin(NucleoUserPB.pGPIO, NucleoUserPB.GPIO_Pin_Cfg.GPIO_PinNumber);
BBinpVal = GPIO_ReadInputPin(BreadBoardPB.pGPIO, BreadBoardPB.GPIO_Pin_Cfg.GPIO_PinNumber);
if(inputVal == 0)
{
GPIO_ToggleOutputPin(NucleoUserLED.pGPIO, NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinNumber);
}
/*****************************************************************
* Controlling the IO present in the bread board *
*****************************************************************/
if (BBinpVal == 0 )
{
GPIO_WriteOutputPin(BreadBoardLED.pGPIO, BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinNumber, 1);
}
else
{
GPIO_WriteOutputPin(BreadBoardLED.pGPIO, BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinNumber, 0);
}
delay();
}
return 0;
}
It is not a function only the macrodefinition.
Your loop is likely to be optimized out
define it as
void inline __attribute__((always_inline)) delay(uint32_t delay)
{
while(delay--) __asm("");
}
Bear in mind that 50000 can be quite long if you run on low clock settings.
Not sure what the issue is because "it is not working" is not very specific.
However there are "quality" issues:
That is an inappropriate use of a macro - there is no benefit over using a function. The function call overhead argument does not hold - it is a delay, it is supposed to take time!
The empty-loop counter is not declared volatile - the compiler at any optimisation level other then the minimum is likely to remove the loop altogether.
A for-loop for a delay is a crude and generally non-deterministic solution, with a period that will change between compilers, with different compiler options and on different targets or with different clock speeds. STM32 is a Cortex-M device and given that you should use the SYSTICK counter for this. For example, as a minimum something like:
volatile uint32_t tick = 0 ;
void SysTick_Handler(void)
{
tick++ ;
}
void delayms( uint32_t millisec )
{
static bool init = false ;
if( !init )
{
SysTick_Config( SystemCoreClock / 1000 ) ;
init = true ;
}
uint32_t start = tick ;
while( tick - start < millisec ) ;
}
The issue was solved by declaring the iterator as a global variable. Now the LED turns on when the Push button is pressed
Previous implementation
#define delay() for(uint32_t i=0; i<=50000; i++);
Working implementation
uint32_t temp;
void delay(void)
{
for(temp = 0;temp<=50000;temp++)
{
;
}
}
Can any one tell me how declaring the variable as global solves the issue?
Find the working implementation below
#include <stdint.h>
#include "stm32l476xx.h"
#include "stm32l476xx_gpoi_driver.h"
#if !defined(__SOFT_FP__) && defined(__ARM_FP)
#warning "FPU is not initialized, but the project is compiling for an FPU. Please initialize the FPU before use."
#endif
uint32_t temp;
void delay(void)
{
for(temp = 0;temp<=50000;temp++)
{
;
}
}
int main(void)
{
GPIO_Handle_t NucleoUserLED,NucleoUserPB,BreadBoardLED,BreadBoardPB;
volatile uint8_t inputVal,BBinpVal;
//User green led in the nucleo board connected to PA5
NucleoUserLED.pGPIO = GPIOA;
NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinNumber = GPIO_PIN_5;
NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinMode = GPIO_MODE_OP;
NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinPuPdControl = GPIO_IP_NO_PUPD;
NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinOpType = GPIO_OP_TYPE_PP;
//User blue button in the nucleo connected to PC13
NucleoUserPB.pGPIO = GPIOC;
NucleoUserPB.GPIO_Pin_Cfg.GPIO_PinNumber = GPIO_PIN_13;
NucleoUserPB.GPIO_Pin_Cfg.GPIO_PinMode = GPIO_MODE_IP;
NucleoUserPB.GPIO_Pin_Cfg.GPIO_PinPuPdControl = GPIO_IP_NO_PUPD;
//User led in the bread board connected to PC8
BreadBoardLED.pGPIO = GPIOC;
BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinNumber = GPIO_PIN_8;
BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinMode = GPIO_MODE_OP;
BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinPuPdControl = GPIO_IP_NO_PUPD;
BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinOpType = GPIO_OP_TYPE_PP;
//User DPDT connected in the breadboard connected to PC6
BreadBoardPB.pGPIO = GPIOC;
BreadBoardPB.GPIO_Pin_Cfg.GPIO_PinNumber = GPIO_PIN_6;
BreadBoardPB.GPIO_Pin_Cfg.GPIO_PinMode = GPIO_MODE_IP;
BreadBoardPB.GPIO_Pin_Cfg.GPIO_PinPuPdControl = GPIO_IP_PU;
GPIO_PeriClkCtrl(GPIOA, ENABLE);
GPIO_PeriClkCtrl(GPIOC, ENABLE);
GPIO_Init(&NucleoUserLED);
GPIO_Init(&NucleoUserPB);
GPIO_Init(&BreadBoardLED);
GPIO_Init(&BreadBoardPB);
while(1)
{
/*****************************************************************
* Controlling the IO present in the nucleo board *
*****************************************************************/
inputVal = GPIO_ReadInputPin(NucleoUserPB.pGPIO, NucleoUserPB.GPIO_Pin_Cfg.GPIO_PinNumber);
BBinpVal = GPIO_ReadInputPin(BreadBoardPB.pGPIO, BreadBoardPB.GPIO_Pin_Cfg.GPIO_PinNumber);
if(inputVal == 0)
{
GPIO_ToggleOutputPin(NucleoUserLED.pGPIO, NucleoUserLED.GPIO_Pin_Cfg.GPIO_PinNumber);
}
/*****************************************************************
* Controlling the IO present in the bread board *
*****************************************************************/
temp = 10;
if (BBinpVal == 0 )
{
GPIO_WriteOutputPin(BreadBoardLED.pGPIO, BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinNumber, 1);
}
else
{
GPIO_WriteOutputPin(BreadBoardLED.pGPIO, BreadBoardLED.GPIO_Pin_Cfg.GPIO_PinNumber, 0);
}
delay();
}
return 0;
}
The issue is solved,
There was an bug in the driver layer I have written
Whenever an GPIO is configured as Input, the registers related to Output for that GPIO pin should be set to their reset value or the driver should not implement the API related to the Output
I'm using a Nucleo L496ZG, X-NUCLEO-IKS01A2 and the Quectel BG96 module to send sensor data (temperature, humidity etc..) to Azure IoT Central over HTTP.
I've been using the example implementation provided by Avnet here, which works fine but it's not power optimized and with a 6700mAh battery pack it only lasts around 30 hours sending telemetry ever ~10 seconds. Goal is for it to last around a week. I'm open to increasing the time between messages but I also want to save power in between sending.
I've gone over the Quectel BG96 manuals and I've tried two things:
1) powering off the device by driving the PWRKEY and turning it back on when I need to send a message
I've gotten this to work, kinda… until I get a hardfault exception which happens seemingly randomly anywhere from within ~5 minutes of running to 2 hours (messages successfully sending prior to the exception). Output of crash log parser is the same every time:
Crash location = strncmp [0x08038DF8] (based on PC value)
Caller location = _findenv_r [0x0804119D] (based on LR value)
Stack Pointer at the time of crash = [20008128]
Target and Fault Info:
Processor Arch: ARM-V7M or above
Processor Variant: C24
Forced exception, a fault with configurable priority has been escalated to HardFault
A precise data access error has occurred. Faulting address: 03060B30
The caller location traces back to my .map file and I don't know what to make of it.
My code:
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE file in the project root for full license information.
//#define USE_MQTT
#include <stdlib.h>
#include "mbed.h"
#include "iothubtransporthttp.h"
#include "iothub_client_core_common.h"
#include "iothub_client_ll.h"
#include "azure_c_shared_utility/platform.h"
#include "azure_c_shared_utility/agenttime.h"
#include "jsondecoder.h"
#include "bg96gps.hpp"
#include "azure_message_helper.h"
#define IOT_AGENT_OK CODEFIRST_OK
#include "azure_certs.h"
/* initialize the expansion board && sensors */
#include "XNucleoIKS01A2.h"
static HTS221Sensor *hum_temp;
static LSM6DSLSensor *acc_gyro;
static LPS22HBSensor *pressure;
static const char* connectionString = "xxx";
// to report F uncomment this #define CTOF(x) (((double)(x)*9/5)+32)
#define CTOF(x) (x)
Thread azure_client_thread(osPriorityNormal, 10*1024, NULL, "azure_client_thread");
static void azure_task(void);
EventFlags deleteOK;
size_t g_message_count_send_confirmations;
/* create the GPS elements for example program */
BG96Interface* bg96Interface;
//static int tilt_event;
// void mems_int1(void)
// {
// tilt_event++;
// }
void mems_init(void)
{
//acc_gyro->attach_int1_irq(&mems_int1); // Attach callback to LSM6DSL INT1
hum_temp->enable(); // Enable HTS221 enviromental sensor
pressure->enable(); // Enable barametric pressure sensor
acc_gyro->enable_x(); // Enable LSM6DSL accelerometer
//acc_gyro->enable_tilt_detection(); // Enable Tilt Detection
}
void powerUp(void) {
if (platform_init() != 0) {
printf("Error initializing the platform\r\n");
return;
}
bg96Interface = (BG96Interface*) easy_get_netif(true);
}
void BG96_Modem_PowerOFF(void)
{
DigitalOut BG96_RESET(D7);
DigitalOut BG96_PWRKEY(D10);
DigitalOut BG97_WAKE(D11);
BG96_RESET = 0;
BG96_PWRKEY = 0;
BG97_WAKE = 0;
wait_ms(300);
}
void powerDown(){
platform_deinit();
BG96_Modem_PowerOFF();
}
//
// The main routine simply prints a banner, initializes the system
// starts the worker threads and waits for a termination (join)
int main(void)
{
//printStartMessage();
XNucleoIKS01A2 *mems_expansion_board = XNucleoIKS01A2::instance(I2C_SDA, I2C_SCL, D4, D5);
hum_temp = mems_expansion_board->ht_sensor;
acc_gyro = mems_expansion_board->acc_gyro;
pressure = mems_expansion_board->pt_sensor;
azure_client_thread.start(azure_task);
azure_client_thread.join();
platform_deinit();
printf(" - - - - - - - ALL DONE - - - - - - - \n");
return 0;
}
static void send_confirm_callback(IOTHUB_CLIENT_CONFIRMATION_RESULT result, void* userContextCallback)
{
//userContextCallback;
// When a message is sent this callback will get envoked
g_message_count_send_confirmations++;
deleteOK.set(0x1);
}
void sendMessage(IOTHUB_CLIENT_LL_HANDLE iotHubClientHandle, char* buffer, size_t size)
{
IOTHUB_MESSAGE_HANDLE messageHandle = IoTHubMessage_CreateFromByteArray((const unsigned char*)buffer, size);
if (messageHandle == NULL) {
printf("unable to create a new IoTHubMessage\r\n");
return;
}
if (IoTHubClient_LL_SendEventAsync(iotHubClientHandle, messageHandle, send_confirm_callback, NULL) != IOTHUB_CLIENT_OK)
printf("FAILED to send! [RSSI=%d]\n", platform_RSSI());
else
printf("OK. [RSSI=%d]\n",platform_RSSI());
IoTHubMessage_Destroy(messageHandle);
}
void azure_task(void)
{
//bool tilt_detection_enabled=true;
float gtemp, ghumid, gpress;
int k;
int msg_sent=1;
while (true) {
powerUp();
mems_init();
/* Setup IoTHub client configuration */
IOTHUB_CLIENT_LL_HANDLE iotHubClientHandle = IoTHubClient_LL_CreateFromConnectionString(connectionString, HTTP_Protocol);
if (iotHubClientHandle == NULL) {
printf("Failed on IoTHubClient_Create\r\n");
return;
}
// add the certificate information
if (IoTHubClient_LL_SetOption(iotHubClientHandle, "TrustedCerts", certificates) != IOTHUB_CLIENT_OK)
printf("failure to set option \"TrustedCerts\"\r\n");
#if MBED_CONF_APP_TELUSKIT == 1
if (IoTHubClient_LL_SetOption(iotHubClientHandle, "product_info", "TELUSIOTKIT") != IOTHUB_CLIENT_OK)
printf("failure to set option \"product_info\"\r\n");
#endif
// polls will happen effectively at ~10 seconds. The default value of minimumPollingTime is 25 minutes.
// For more information, see:
// https://azure.microsoft.com/documentation/articles/iot-hub-devguide/#messaging
unsigned int minimumPollingTime = 9;
if (IoTHubClient_LL_SetOption(iotHubClientHandle, "MinimumPollingTime", &minimumPollingTime) != IOTHUB_CLIENT_OK)
printf("failure to set option \"MinimumPollingTime\"\r\n");
IoTDevice* iotDev = (IoTDevice*)malloc(sizeof(IoTDevice));
if (iotDev == NULL) {
return;
}
setUpIotStruct(iotDev);
char* msg;
size_t msgSize;
hum_temp->get_temperature(>emp); // get Temp
hum_temp->get_humidity(&ghumid); // get Humidity
pressure->get_pressure(&gpress); // get pressure
iotDev->Temperature = CTOF(gtemp);
iotDev->Humidity = (int)ghumid;
iotDev->Pressure = (int)gpress;
printf("(%04d)",msg_sent++);
msg = makeMessage(iotDev);
msgSize = strlen(msg);
sendMessage(iotHubClientHandle, msg, msgSize);
free(msg);
iotDev->Tilt &= 0x2;
/* schedule IoTHubClient to send events/receive commands */
IOTHUB_CLIENT_STATUS status;
while ((IoTHubClient_LL_GetSendStatus(iotHubClientHandle, &status) == IOTHUB_CLIENT_OK) && (status == IOTHUB_CLIENT_SEND_STATUS_BUSY))
{
IoTHubClient_LL_DoWork(iotHubClientHandle);
ThisThread::sleep_for(100);
}
deleteOK.wait_all(0x1);
free(iotDev);
IoTHubClient_LL_Destroy(iotHubClientHandle);
powerDown();
ThisThread::sleep_for(300000);
}
return;
}
I know PSM is probably the way to go since powering on/off the device draws a lot of power but it would be useful if someone had an idea of what is happening here.
2) putting the device to PSM between sending messages
The BG96 library in the example code I'm using doesn't have a method to turn on PSM so I tried to implement my own. When I tried to run it, it basically runs into an exception right away so I know it's wrong (I'm very new to embedded development and have no prior experience with AT commands).
/** ----------------------------------------------------------
* this is a method provided by current library
* #brief Tx a string to the BG96 and wait for an OK response
* #param none
* #retval true if OK received, false otherwise
*/
bool BG96::tx2bg96(char* cmd) {
bool ok=false;
_bg96_mutex.lock();
ok=_parser.send(cmd) && _parser.recv("OK");
_bg96_mutex.unlock();
return ok;
}
/**
* method I created in an attempt to use PSM
*/
bool BG96::psm(void) {
return tx2bg96((char*)"AT+CPSMS=1,,,”00000100”,”00000001”");
}
Can someone tell me what I'm doing wrong and provide any guidance on how I can achieve my goal of having my device run on battery for longer?
Thank you!!
I got Power Saving Mode working by using Mbed's ATCmdParser and the AT+QPSMS commands as per Quectel's docs. The modem doesn't always go into power saving mode right away so that should be noted. I also found that I have to restart the modem afterwards or else I get weird behaviour. My code looks something like this:
bool BG96::psm(char* T3412, char* T3324) {
_bg96_mutex.lock();
if(_parser.send("AT+QPSMS=1,,,\"%s\",\"%s\"", T3412, T3324) && _parser.recv("OK")) {
_bg96_mutex.unlock();
}else {
_bg96_mutex.unlock();
return false;
}
return BG96Ready(); }//restarts modem
To send a message to Azure, the modem will need to be manually woken up by driving the PWRKEY to start bi-directional communication, and a new client handle needs to be created and torn down every time since Azure connection uses keepAlive and the modem will be unreachable when it's in PSM.
So i am having this project. The system will give priority to emergency vehicles when they get close to traffic lights and when they get close i want to change the state of the traffic lights from red to green but in correct sequence.
I have managed to pull it off but it doesnt work with a real car because the xbees (coordinator on the vehicle and end device on home-made traffic lights) take sometime to communicate which is not enough for the speed of a vehicle approaching traffic lights with lets say an average speed of 60km/h.
The system works like this. There is an arduino on the vehicle which has a GPS shield and an xbee set to COORDINATOR on it. In the program on the arduino it checks if the gps reads coordinates that are saved inside the arduino so it checks against real time coordinates and if they match, the xbee gets to send a message across to the corresponding xbees that are set as end-devices on the traffic lights which again setup is arduino + xbee.
The problem 1 is i need to make a faster connection between the xbees (COORDINATOR - END DEVICE)
Here is the arduino sketch for ARDUINO-GPS-COORDINATOR. Note: GPS Shield is from adafruit and i use their code plus some of mine.
// Test code for Adafruit GPS modules using MTK3329/MTK3339 driver
//
// This code shows how to listen to the GPS module in an interrupt
// which allows the program to have more 'freedom' - just parse
// when a new NMEA sentence is available! Then access data when
// desired.
//
// Tested and works great with the Adafruit Ultimate GPS module
// using MTK33x9 chipset
// ------> http://www.adafruit.com/products/746
// Pick one up today at the Adafruit electronics shop
// and help support open source hardware & software! -ada
#include <Adafruit_GPS.h>
#include <SoftwareSerial.h>
SoftwareSerial mySerial(10, 11);
SoftwareSerial xbee(13,12);
// If using hardware serial (e.g. Arduino Mega), comment out the
// above SoftwareSerial line, and enable this line instead
// (you can change the Serial number to match your wiring):
//HardwareSerial mySerial = Serial1;
Adafruit_GPS GPS(&mySerial);
// Set GPSECHO to 'false' to turn off echoing the GPS data to the Serial console
// Set to 'true' if you want to debug and listen to the raw GPS sentences.
#define GPSECHO true
// this keeps track of whether we're using the interrupt
// off by default!
boolean usingInterrupt = false;
void useInterrupt(boolean); // Func prototype keeps Arduino 0023 happy
void setup()
{
Serial.begin(115200);
Serial.println("Adafruit GPS library basic test!");
xbee.begin(9600);
xbee.println("SoftwareSerial on coordinator working!");
GPS.begin(9600);
// uncomment this line to turn on RMC (recommended minimum) and GGA (fix data) including altitude
GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA);
// uncomment this line to turn on only the "minimum recommended" data
//GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCONLY);
// For parsing data, we don't suggest using anything but either RMC only or RMC+GGA since
// the parser doesn't care about other sentences at this time
// Set the update rate
GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ); // 1 Hz update rate
// For the parsing code to work nicely and have time to sort thru the data, and
// print it out we don't suggest using anything higher than 1 Hz
// Request updates on antenna status, comment out to keep quiet
GPS.sendCommand(PGCMD_ANTENNA);
// the nice thing about this code is you can have a timer0 interrupt go off
// every 1 millisecond, and read data from the GPS for you. that makes the
// loop code a heck of a lot easier!
useInterrupt(true);
delay(1000);
// Ask for firmware version
mySerial.println(PMTK_Q_RELEASE);
}
// Interrupt is called once a millisecond, looks for any new GPS data, and stores it
SIGNAL(TIMER0_COMPA_vect) {
char c = GPS.read();
// if you want to debug, this is a good time to do it!
#ifdef UDR0
if (GPSECHO)
if (c) UDR0 = c;
// writing direct to UDR0 is much much faster than Serial.print
// but only one character can be written at a time.
#endif
}
void useInterrupt(boolean v) {
if (v) {
// Timer0 is already used for millis() - we'll just interrupt somewhere
// in the middle and call the "Compare A" function above
OCR0A = 0xAF;
TIMSK0 |= _BV(OCIE0A);
usingInterrupt = true;
} else {
// do not call the interrupt function COMPA anymore
TIMSK0 &= ~_BV(OCIE0A);
usingInterrupt = false;
}
}
// difference_ratio
float diff_ratio = 0.010;
// COORDINATES INDEX
float coord_lat = 23;
float coord_lon = 23;
uint32_t timer = millis();
void loop() // run over and over again
{
// in case you are not using the interrupt above, you'll
// need to 'hand query' the GPS, not suggested :(
if (! usingInterrupt) {
// read data from the GPS in the 'main loop'
char c = GPS.read();
// if you want to debug, this is a good time to do it!
if (GPSECHO)
if (c) Serial.print(c);
}
// if a sentence is received, we can check the checksum, parse it...
if (GPS.newNMEAreceived()) {
// a tricky thing here is if we print the NMEA sentence, or data
// we end up not listening and catching other sentences!
// so be very wary if using OUTPUT_ALLDATA and trytng to print out data
//Serial.println(GPS.lastNMEA()); // this also sets the newNMEAreceived() flag to false
if (!GPS.parse(GPS.lastNMEA())) // this also sets the newNMEAreceived() flag to false
return; // we can fail to parse a sentence in which case we should just wait for another
}
// if millis() or timer wraps around, we'll just reset it
if (timer > millis()) timer = millis();
// approximately every 2 seconds or so, print out the current stats
if (millis() - timer > 2000) {
timer = millis(); // reset the timer
Serial.print("\nTime: ");
Serial.print(GPS.hour, DEC); Serial.print(':');
Serial.print(GPS.minute, DEC); Serial.print(':');
Serial.print(GPS.seconds, DEC); Serial.print('.');
Serial.println(GPS.milliseconds);
Serial.print("Date: ");
Serial.print(GPS.day, DEC); Serial.print('/');
Serial.print(GPS.month, DEC); Serial.print("/20");
Serial.println(GPS.year, DEC);
Serial.print("Fix: "); Serial.print((int)GPS.fix);
Serial.print(" quality: "); Serial.println((int)GPS.fixquality);
if (GPS.fix) {
//Serial.print("Location: ");
//Serial.print(GPS.latitude, 4); Serial.print(GPS.lat);
//Serial.print(", ");
//Serial.print(GPS.longitude, 4); Serial.println(GPS.lon);
Serial.print("Location (in degrees, works with Google Maps): ");
Serial.print(GPS.latitudeDegrees, 4);
Serial.print(", ");
Serial.println(GPS.longitudeDegrees, 4);
//Serial.print("Speed (knots): "); Serial.println(GPS.speed);
//Serial.print("Angle: "); Serial.println(GPS.angle);
//Serial.print("Altitude: "); Serial.println(GPS.altitude);
//Serial.print("Satellites: "); Serial.println((int)GPS.satellites);
if(GPS.latitudeDegrees + diff_ratio >= coord_lat && coord_lat >= GPS.latitudeDegrees - diff_ratio) {
if(GPS.longitudeDegrees + diff_ratio >= coord_lon && coord_lon >= GPS.longitudeDegrees - diff_ratio){
Serial.println("location OKAY");
xbee.println("K");
}
}
//if((float)GPS.latitude > (home_lat - diff_ratio) && (float)
}
}
}
The important part is where it says if(GPS.fix()) and later on.
And here is the sketch for the traffic light simulation which if it receives the message "K" it will stay to green light until it does not receive it anymore.
#include <SoftwareSerial.h>
SoftwareSerial xbee(3,2);
int greenled = 8; //Led's and pins
int yellowled = 9;
int redled = 10;
int ard_led = 13;
void setup(){
pinMode(greenled,OUTPUT);
pinMode(yellowled, OUTPUT);
pinMode(redled, OUTPUT);
pinMode(ard_led,OUTPUT);
Serial.begin(9600);
xbee.begin(9600);
}
void loop(){
delay(700);
if(xbee.available() > 0 && xbee.read() == 'K' && digitalRead(ard_led) == 0){
//Serial.println("second block");
digitalWrite(redled,HIGH);
delay(1000);
digitalWrite(yellowled, HIGH); //Yellow and red on for 2 seconds
digitalWrite(ard_led,HIGH);
}else if(xbee.available() > 0 && xbee.read() == 'K' && digitalRead(ard_led) == 1){
//Serial.println("third block");
blinking_green();
}
else if(!xbee.available() && xbee.read() != 'K' && digitalRead(greenled) == 0){
//Serial.println("first block");
digitalWrite(redled, HIGH);
delay(1000);
digitalWrite(yellowled, HIGH); //Yellow and red on for 2 seconds
delay(1000);
digitalWrite(redled, LOW); //Red and Yellow off
digitalWrite(yellowled, LOW);
digitalWrite(greenled, HIGH); //Green on for 5 seconds
delay(3000);
digitalWrite(greenled, LOW); //Green off, yellow on for 2 seconds
digitalWrite(yellowled, HIGH);
delay(1000);
digitalWrite(yellowled,LOW);
digitalWrite(redled,HIGH);
} else if(!xbee.available() && xbee.read() != 'K' && digitalRead(greenled) == 1 && digitalRead(yellowled == 0)){
//Serial.println("fourth block");
digitalWrite(greenled,LOW);
digitalWrite(yellowled, HIGH);
delay(1000);
digitalWrite(yellowled, LOW);
digitalWrite(redled,HIGH);
digitalWrite(ard_led,LOW);
}
}
void blinking_green(){
digitalWrite(redled, LOW); //Red and Yellow off
digitalWrite(yellowled, LOW);
digitalWrite(greenled,HIGH);
delay(2500);
}
Problem 2: How can i interrupt the traffic lights simulation instantly when it receives a message from a nearby arduino to change the traffic light to green BEFORE it finishes that loop? Because in a real example green and red light would say for over 20 seconds.
Question: Will a faster baud rate on the xbees achieve faster xbee communication?
thank you in advance
You need to change the loop() on your traffic light simulation. Have a variable you use to store the "state" of the light, along with a timer to keep track of when the next state change happens. This way, your loop can also check the XBee serial input every time around.
if (xbee_event_happened()) {
set_leds_off();
timer = millis();
state = STATE_FLASH_GREEN_OFF;
}
switch (state) {
case STATE_FLASH_GREEN_OFF:
if (millis() - timer > 1000) {
set_leds_green();
state = STATE_FLASH_GREEN_ON;
timer = millis();
}
break;
case STATE_FLASH_GREEN_ON:
if (millis() - timer > 1000) {
set_leds_off();
state = STATE_FLASH_GREEN_OFF;
timer = millis();
}
break;
case STATE_RED:
if (millis() - timer > 5000) {
set_leds_green();
state = STATE_GREEN;
timer = millis();
}
break;
case STATE_GREEN:
if (millis() - timer > 3000) {
set_leds_yellow();
state = STATE_YELLOW;
timer = millis();
}
break;
// etc.
}
This just covers the basics, but it shows an important aspect of loop() function design -- it should never run for more than a few milliseconds. Don't have a delay inside of your main loop, track the state of the device and then use logic to decide if the state needs to change on that pass of the loop.
Additionally, use higher baud rates when possible to avoid latency from serial transmissions, get rid of the 700ms delay in your loop, and organize your if/else structure better:
if (xbee.available() > 0) {
character = xbee.read();
if (character == 'K') {
if (digitalRead(ard_led)) {
// second block
} else {
// third block
}
} else if (character == 'X') {
// do something different? Vehicle left area?
}
}
I was wondering if anyone has found a way to determine the intention of a master communicating with an stm32f40x chip? From the perspective of the firmware on the stm32f40x chip, the ADDRess sent by the master is not available, and the r/w bit (bit 0 of the address) contained therein is also not available. So how can I prevent collisions? Has anyone else dealt with this? If so what techniques did you use? My tentative solution is below for reference. I delayed any writes to the DR data register until the TXE interrupt occurs. I thought at first this would be too late, and a byte of garbage would be clocked out, but it seems to be working.
static inline void LLEVInterrupt(uint16_t irqSrc)
{
uint8_t i;
volatile uint16_t status;
I2CCBStruct* buffers;
I2C_TypeDef* addrBase;
// see which IRQ occurred, process accordingly...
switch (irqSrc)
{
case I2C_BUS_CHAN_1:
addrBase = this.addrBase1;
buffers = &this.buffsBus1;
break;
case I2C_BUS_CHAN_2:
addrBase = this.addrBase2;
buffers = &this.buffsBus2;
break;
case I2C_BUS_CHAN_3:
addrBase = this.addrBase3;
buffers = &this.buffsBus3;
break;
default:
while(1);
}
// ...START condition & address match detected
if (I2C_GetITStatus(addrBase, I2C_IT_ADDR) == SET)
{
// I2C_IT_ADDR: Cleared by software reading SR1 register followed reading SR2, or by hardware
// when PE=0.
// Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
// set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
// set in I2C_SR1 or when the STOPF bit is cleared.
status = addrBase->SR1;
status = addrBase->SR2;
// Reset the index and receive count
buffers->txIndex = 0;
buffers->rxCount = 0;
// setup to ACK any Rx'd bytes
I2C_AcknowledgeConfig(addrBase, ENABLE);
return;
}
// Slave receiver mode
if (I2C_GetITStatus(addrBase, I2C_IT_RXNE) == SET)
{
// I2C_IT_RXNE: Cleared by software reading or writing the DR register
// or by hardware when PE=0.
// copy the received byte to the Rx buffer
buffers->rxBuf[buffers->rxCount] = (uint8_t)I2C_ReadRegister(addrBase, I2C_Register_DR);
if (RX_BUFFER_SIZE > buffers->rxCount)
{
buffers->rxCount++;
}
return;
}
// Slave transmitter mode
if (I2C_GetITStatus(addrBase, I2C_IT_TXE) == SET)
{
// I2C_IT_TXE: Cleared by software writing to the DR register or
// by hardware after a start or a stop condition or when PE=0.
// send any remaining bytes
I2C_SendData(addrBase, buffers->txBuf[buffers->txIndex]);
if (buffers->txIndex < buffers->txCount)
{
buffers->txIndex++;
}
return;
}
// ...STOP condition detected
if (I2C_GetITStatus(addrBase, I2C_IT_STOPF) == SET)
{
// STOPF (STOP detection) is cleared by software sequence: a read operation
// to I2C_SR1 register (I2C_GetITStatus()) followed by a write operation to
// I2C_CR1 register (I2C_Cmd() to re-enable the I2C peripheral).
// From the reference manual RM0368:
// Figure 163. Transfer sequence diagram for slave receiver
// if (STOPF == 1) {READ SR1; WRITE CR1}
// clear the IRQ status
status = addrBase->SR1;
// Write to CR1
I2C_Cmd(addrBase, ENABLE);
// read cycle (reset the status?
if (buffers->txCount > 0)
{
buffers->txCount = 0;
buffers->txIndex = 0;
}
// write cycle begun?
if (buffers->rxCount > 0)
{
// pass the I2C data to the enabled protocol handler
for (i = 0; i < buffers->rxCount; i++)
{
#if (COMM_PROTOCOL == COMM_PROTOCOL_DEBUG)
status = ProtProcRxData(buffers->rxBuf[i]);
#elif (COMM_PROTOCOL == COMM_PROTOCOL_PTEK)
status = PTEKProcRxData(buffers->rxBuf[i]);
#else
#error ** Invalid Host Protocol Selected **
#endif
if (status != ST_OK)
{
LogErr(ST_COMM_FAIL, __LINE__);
}
}
buffers->rxCount = 0;
}
return;
}
if (I2C_GetITStatus(addrBase, I2C_IT_AF) == SET)
{
// The NAck received from the host on the last byte of a transmit
// is shown as an acknowledge failure and must be cleared by
// writing 0 to the AF bit in SR1.
// This is not a real error but just how the i2c slave transmission process works.
// The hardware has no way to know how many bytes are to be transmitted, so the
// NAck is assumed to be a failed byte transmission.
// EV3-2: AF=1; AF is cleared by writing ‘0’ in AF bit of SR1 register.
I2C_ClearITPendingBit(addrBase, I2C_IT_AF);
return;
}
if (I2C_GetITStatus(addrBase, I2C_IT_BERR) == SET)
{
// There are extremely infrequent bus errors when testing with I2C Stick.
// Safer to have this check and clear than to risk an
// infinite loop of interrupts
// Set by hardware when the interface detects an SDA rising or falling
// edge while SCL is high, occurring in a non-valid position during a
// byte transfer.
// Cleared by software writing 0, or by hardware when PE=0.
I2C_ClearITPendingBit(addrBase, I2C_IT_BERR);
LogErr(ST_COMM_FAIL, __LINE__);
return;
}
if (I2C_GetITStatus(addrBase, I2C_IT_OVR) == SET)
{
// Check for other errors conditions that must be cleared.
I2C_ClearITPendingBit(addrBase, I2C_IT_OVR);
LogErr(ST_COMM_FAIL, __LINE__);
return;
}
if (I2C_GetITStatus(addrBase, I2C_IT_TIMEOUT) == SET)
{
// Check for other errors conditions that must be cleared.
I2C_ClearITPendingBit(addrBase, I2C_IT_TIMEOUT);
LogErr(ST_COMM_FAIL, __LINE__);
return;
}
// a spurious IRQ occurred; log it
LogErr(ST_INV_STATE, __LINE__);
}
I'm not shure if I understand you. May you should provide more information or an example about what you would like to do.
Maybe this helps:
My experience is, that in many I2C implementations the R/W-Bit is used together with the 7-bit-address, so most of the times, there is no additional function to set or reset the R/W-Bit.
So that means all addresses beyond 128 should be used to read data from slaves and all addresses over 127 should be used to write data to slaves.
There seems to be no way to determine if the transaction initiated by receipt of the address is a read or a write even though the hardware know whether the LSbit is set or clear. The intention of the master will only be known once the RXNE or TXE interrupt/bit occurs.