How to express union types in Kotlin? - kotlin

Union types, also known as sum types are a powerful language feature that I find myself using often in TypeScript
something along the lines of:
let a: string | number = “hello”
a = 3
How would I achieve this type of behavior in kotlin?
I saw some people talking about using inheritance and sealed classes to accomplish this but it looks like if you want to use that approach with primitives (such as String and Int) then one would have to write wrappers around those types to access the underlying value.
Im wondering if there is a more pragmatic solution.

There is an issue in Kotlin issue tracker: Denotable union and intersection types (it also contains links to a few previous discussions). The last update from the team is
Roman Elizarov commented 19 Nov 2021 18:14
Short update on this issue. This is an interesting and important feature, but it is really hard to integrate into the language in a backward-compatible and pragmatic way. We'll start working on it fully when we release the new K2 compiler and the best compiler engineers from our team will be able to start looking into it.

As far as I know, there isn't really a "pretty" way to do it in kotlin
One way to achieve a variable that can hold strings and ints could look like that:
var x: Any = 5
x = "hello"
but as you can notice, X can hold any type not only strings and ints, but you could use the "Either" class, from Arrow library (If I'm not mistaken) which allows such behaviour:
var x = Either<Int, String>(5)
Either way, I'm not really sure why would you need such a variable

Related

Is it acceptable to use `to` to create a `Pair`?

to is an infix function within the standard library. It can be used to create Pairs concisely:
0 to "hero"
in comparison with:
Pair(0, "hero")
Typically, it is used to initialize Maps concisely:
mapOf(0 to "hero", 1 to "one", 2 to "two")
However, there are other situations in which one needs to create a Pair. For instance:
"to be or not" to "be"
(0..10).map { it to it * it }
Is it acceptable, stylistically, to (ab)use to in this manner?
Just because some language features are provided does not mean they are better over certain things. A Pair can be used instead of to and vice versa. What becomes a real issue is that, does your code still remain simple, would it require some reader to read the previous story to understand the current one? In your last map example, it does not give a hint of what it's doing. Imagine someone reading { it to it * it}, they would be most likely confused. I would say this is an abuse.
to infix offer a nice syntactical sugar, IMHO it should be used in conjunction with a nicely named variable that tells the reader what this something to something is. For example:
val heroPair = Ironman to Spiderman //including a 'pair' in the variable name tells the story what 'to' is doing.
Or you could use scoping functions
(Ironman to Spiderman).let { heroPair -> }
I don't think there's an authoritative answer to this.  The only examples in the Kotlin docs are for creating simple constant maps with mapOf(), but there's no hint that to shouldn't be used elsewhere.
So it'll come down to a matter of personal taste…
For me, I'd be happy to use it anywhere it represents a mapping of some kind, so in a map{…} expression would seem clear to me, just as much as in a mapOf(…) list.  Though (as mentioned elsewhere) it's not often used in complex expressions, so I might use parentheses to keep the precedence clear, and/or simplify the expression so they're not needed.
Where it doesn't indicate a mapping, I'd be much more hesitant to use it.  For example, if you have a method that returns two values, it'd probably be clearer to use an explicit Pair.  (Though in that case, it'd be clearer still to define a simple data class for the return value.)
You asked for personal perspective so here is mine.
I found this syntax is a huge win for simple code, especial in reading code. Reading code with parenthesis, a lot of them, caused mental stress, imagine you have to review/read thousand lines of code a day ;(

Convert table to string, then back again

I would like to know how to convert a table to a string, and then back again.
I want to use the sockets module to send a table, but I must do it through a string.
I would like to do it like this:
a = { 1, 2, 3 } -- create table
b = tostring(a) -- convert table to string
c = totable(b) -- convert string back to table
There are lots of existing Lua libraries for this.
See http://lua-users.org/wiki/TableSerialization
Table serialization functions are pretty straight forward, writing your own is a good learning exercise.
PS. Just checked...The love2D API has a table serialization library in it already.
As others have said, you can't serialize everything easily, but you can serialize a great many things. For this kind of IPC, JSON is the current lingua franca, and I highly recommend it, especially since you can fairly safely interchange with many other languages out there.
Lua has several implementations, but check out this one especially, as it works well, is pretty stable, and there's a good level of maintenance activity on github. Example code:
json = require("json")
encoded = json.encode(someVar)
decoded = json.decode(someStr)

How to consistently replace atoms with variables in Prolog?

I am writing a parser for SPARQL (Semantic Web query language) using DCG. I want to replace SPARQL variable names with Prolog variables. How would I go about this?
I can generate new variables using length([NewVar], 1), but I cannot keep track of existing assignments by simply using a list of name-variable pairs. A member/2 operation on the list will return a new variable, not the one stored in the list.
Is there an easy way for naming variables in Prolog, e.g., '$VAR(Name)'?
member/2 will do what you want. Here is an example:
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 7.3.25)
Copyright (c) 1990-2016 University of Amsterdam, VU Amsterdam
L=[a-X,b-Y,c-Z], member(b-V,L).
L = [a-X, b-V, c-Z],
Y = V
But you might get problems if you interleave write/1 with member/2,
since a variable might change its identity, i.e. the write symbol in the following circumstances:
because of garbage collection, if a variable is written as _G<memloc>
because of aliasing, in the above example the memloc of V might be shown
instead of the memloc of Y
Same problem with (#<)/2. One way out is to use attribute variables, which at least puts an end to aliasing, since attribute variables are usually unified last,
so in the above example if Y is an attribute variable and V is an ordinary variable you would never see the memloc of V after
calling member/2.
Further you can also mitigate the problem by using ISO core standard variable_names/1 write option, to write out a variablified term. The variable_names/1 write option is immune to garbage collection or aliasing.
Bye

Right way to forcibly convert Maybe a to a in Elm, failing clearly for Nothings

Okay, what I really wanted to do is, I have an Array and I want to choose a random element from it. The obvious thing to do is get an integer from a random number generator between 0 and the length minus 1, which I have working already, and then applying Array.get, but that returns a Maybe a. (It appears there's also a package function that does the same thing.) Coming from Haskell, I get the type significance that it's protecting me from the case where my index was out of range, but I have control over the index and don't expect that to happen, so I'd just like to assume I got a Just something and somewhat forcibly convert to a. In Haskell this would be fromJust or, if I was feeling verbose, fromMaybe (error "some message"). How should I do this in Elm?
I found a discussion on the mailing list that seems to be discussing this, but it's been a while and I don't see the function I want in the standard library where the discussion suggests it would be.
Here are some pretty unsatisfying potential solutions I found so far:
Just use withDefault. I do have a default value of a available, but I don't like this as it gives the completely wrong meaning to my code and will probably make debugging harder down the road.
Do some fiddling with ports to interface with Javascript and get an exception thrown there if it's Nothing. I haven't carefully investigated how this works yet, but apparently it's possible. But this just seems to mix up too many dependencies for what would otherwise be simple pure Elm.
(answering my own question)
I found two more-satisfying solutions:
Roll my own partially defined function, which was referenced elsewhere in the linked discussion. But the code kind of feels incomplete this way (I'd hope the compiler would warn me about incomplete pattern matches some day) and the error message is still unclear.
Pattern-match and use Debug.crash if it's a Nothing. This appears similar to Haskell's error and is the solution I'm leaning towards right now.
import Debug
fromJust : Maybe a -> a
fromJust x = case x of
Just y -> y
Nothing -> Debug.crash "error: fromJust Nothing"
(Still, the module name and description also make me hesitate because it doesn't seem like the "right" method intended for my purposes; I want to indicate true programmer error instead of mere debugging.)
Solution
The existence or use of a fromJust or equivalent function is actually code smell and tells you that the API has not been designed correctly. The problem is that you're attempting to make a decision on what to do before you have the information to do it. You can think of this in two cases:
If you know what you're supposed to do with Nothing, then the solution is simple: use withDefault. This will become obvious when you're looking at the right point in your code.
If you don't know what you're supposed to do in the case where you have Nothing, but you still want to make a change, then you need a different way of doing so. Instead of pulling the value out of the Maybe use Maybe.map to change the value while keeping the Maybe. As an example, let's say you're doing the following:
foo : Maybe Int -> Int
foo maybeVal =
let
innerVal = fromJust maybeVal
in
innerVal + 2
Instead, you'll want this:
foo : Maybe Int -> Maybe Int
foo maybeVal =
Maybe.map (\innerVal -> innerVal + 2) maybeVal
Notice that the change you wanted is still done in this case, you've simply not handled the case where you have a Nothing. You can now pass this value up and down the call chain until you've hit a place where it's natural to use withDefault to get rid of the Maybe.
What's happened is that we've separated the concerns of "How do I change this value" and "What do I do when it doesn't exist?". We deal with the former using Maybe.map and the latter with Maybe.withDefault.
Caveat
There are a small number of cases where you simply know that you have a Just value and need to eliminate it using fromJust as you described, but those cases should be few and far between. There's quite a few that actually have a simpler alternative.
Example: Attempting to filter a list and get the value out.
Let's say you have a list of Maybes that you want the values of. A common strategy might be:
foo : List (Maybe a) -> List a
foo hasAnything =
let
onlyHasJustValues = List.filter Maybe.isJust hasAnything
onlyHasRealValues = List.map fromJust onlyHasJustValues
in
onlyHasRealValues
Turns out that even in this case, there are clean ways to avoid fromJust. Most languages with a collection that has a map and a filter have a method to filter using a Maybe built in. Haskell has Maybe.mapMaybe, Scala has flatMap, and Elm has List.filterMap. This transforms your code into:
foo : List (Maybe a) -> List a
foo hasAnything =
let
onlyHasRealValues = List.filterMap (\x -> x) hasAnything
in
onlyHasRealValues

can a variable have multiple values

In algebra if I make the statement x + y = 3, the variables I used will hold the values either 2 and 1 or 1 and 2. I know that assignment in programming is not the same thing, but I got to wondering. If I wanted to represent the value of, say, a quantumly weird particle, I would want my variable to have two values at the same time and to have it resolve into one or the other later. Or maybe I'm just dreaming?
Is it possible to say something like i = 3 or 2;?
This is one of the features planned for Perl 6 (junctions), with syntax that should look like my $a = 1|2|3;
If ever implemented, it would work intuitively, like $a==1 being true at the same time as $a==2. Also, for example, $a+1 would give you a value of 2|3|4.
This feature is actually available in Perl5 as well through Perl6::Junction and Quantum::Superpositions modules, but without the syntax sugar (through 'functions' all and any).
At least for comparison (b < any(1,2,3)) it was also available in Microsoft Cω experimental language, however it was not documented anywhere (I just tried it when I was looking at Cω and it just worked).
You can't do this with native types, but there's nothing stopping you from creating a variable object (presuming you are using an OO language) which has a range of values or even a probability density function rather than an actual value.
You will also need to define all the mathematical operators between your variables and your variables and native scalars. Same goes for the equality and assignment operators.
numpy arrays do something similar for vectors and matrices.
That's also the kind of thing you can do in Prolog. You define rules that constraint your variables and then let Prolog resolve them ...
It takes some time to get used to it, but it is wonderful for certain problems once you know how to use it ...
Damien Conways Quantum::Superpositions might do what you want,
https://metacpan.org/pod/Quantum::Superpositions
You might need your crack-pipe however.
What you're asking seems to be how to implement a Fuzzy Logic system. These have been around for some time and you can undoubtedly pick up a library for the common programming languages quite easily.
You could use a struct and handle the operations manualy. Otherwise, no a variable only has 1 value at a time.
A variable is nothing more than an address into memory. That means a variable describes exactly one place in memory (length depending on the type). So as long as we have no "quantum memory" (and we dont have it, and it doesnt look like we will have it in near future), the answer is a NO.
If you want to program and to modell this behaviour, your way would be to use a an array (with length equal to the number of max. multiple values). With this comes the increased runtime, hence the computations must be done on each of the values (e.g. x+y, must compute with 2 different values x1+y1, x2+y2, x1+y2 and x2+y1).
In Perl , you can .
If you use Scalar::Util , you can have a var take 2 values . One if it's used in string context , and another if it's used in a numerical context .