I have a parametric surface in 3D. I would like to observe parts of this surface, specifically, the part with z > 0 and the part with x2 + y2 + z2 < c.
A few methods that I tried:
Naïvely throwing away the rest of the data, for instance setting X[Z<0] = nan etc. Since this does not line up with the parametrization that I chose, it would create ragged edges. Is there some sort of "antialiasing" interpolation options that I can choose? I would be grateful for a pointer to the docs for numpy or plotly.
Trying to set the alpha of the color scale. This sort of works, it seems to introduce some incorrect rendering. In the picture below, the dark green lump should be at the front of the light green disk. Is there something that I did wrong?
On the other hand, I couldn't locate in the manual a way to set "two dimensional" color scales, so that I can simultaneously set the opacity according to the z value and the hue according to some other quantity of interest. Is this possible?
Is there a convenient method to achieve my goal? Or can I improve my attempts above? Any help is appreciated!
I am new to GLUT and opengl. I need to draw a scatterplot matrix for n dimensional array.
I have saved the data from csv to a vector of vectors and each vector corresponds to a row. I have plotted just one scatterplot. And used GL_LINES to draw the grid. My questions
1. How do I draw points in a particular grid? Using GL_POINTS I can only draw points in the entire window.
Please let me know need any further info to answer this question
Thanks
What you need to do is be able to transform your data's (x,y) coordinates into screen coordinates. The most straightforward way to do it actually does not rely on OpenGL or GLUT. All you have to do is use a little math. Determine the screen (x,y) coordinates of the place where you want a datapoint for (0,0) to be on the screen, and then determine how far apart you want one increment to be on the screen. Simply take your original data points, apply the offset, and then scale them, to get your screen coordinates, which you then pass into glVertex2f() (or whatever function you are using to specify points in your API).
For instance, you might decide you want point (0,0) in your data to be at location (200,0) on your screen, and the distance between 0 and 1 in your data to be 30 pixels on the screen. This operation will look like this:
int x = 0, y = 0; //Original data points
int scaleX = 30, scaleY = 30; //Scaling values for each component
int offsetX = 100, offsetY = 100; //Where you want the origin of your graph to be
// Apply the scaling values and offsets:
int screenX = x * scaleX + offsetX;
int screenY = y * scaleY + offsetY;
// Calls to your drawing functions using screenX and screenY as your coordinates
You will have to determine values that make sense for the scalaing and offsets. You can also have your program use different values for different sets of data, so you can display multiple graphs on the same screen. But this is a simple way to do it.
There are also other ways you can go about this. OpenGL has very powerful coordinate transformation functions and matrix math capabilities. Those may become more useful when you develop increasingly elaborate programs. They're most useful if you're going to be moving things around the screen in real-time, or operating on incredibly large data sets, as they allow you to perform these mathematical calculations very quickly using your graphics hardware (which is able to do them much faster than the CPU). However, the time it takes for the CPU to do simple calculations like those where you only are going to do them once or very infrequently on limited sets of data is not a problem for computers today.
Let's say I have circle bouncing around inside a rectangular area. At some point this circle will collide with one of the surfaces of the rectangle and reflect back. The usual way I'd do this would be to let the circle overlap that boundary and then reflect the velocity vector. The fact that the circle actually overlaps the boundary isn't usually a problem, nor really noticeable at low velocity. At high velocity it becomes quite clear that the circle is doing something it shouldn't.
What I'd like to do is to programmatically take reflection into account and place the circle at it's proper position before displaying it on the screen. This means that I have to calculate the point where it hits the boundary between it's current position and it's future position -- rather than calculating it's new position and then checking if it has hit the boundary.
This is a little bit more complicated than the usual circle/rectangle collision problem. I have a vague idea of how I should do it -- basically create a bounding rectangle between the current position and the new position, which brings up a slew of problems of it's own (Since the rectangle is rotated according to the direction of the circle's velocity). However, I'm thinking that this is a common problem, and that a common solution already exists.
Is there a common solution to this kind of problem? Perhaps some basic theories which I should look into?
Since you just have a circle and a rectangle, it's actually pretty simple. A circle of radius r bouncing around inside a rectangle of dimensions w, h can be treated the same as a point p at the circle's center, inside a rectangle (w-r), (h-r).
Now position update becomes simple. Given your point at position x, y and a per-frame velocity of dx, dy, the updated position is x+dx, y+dy - except when you cross a boundary. If, say, you end up with x+dx > W (letting W = w-r), then you do the following:
crossover = (x+dx) - W // this is how far "past" the edge your ball went
x = W - crossover // so you bring it back the same amount on the correct side
dx = -dx // and flip the velocity to the opposite direction
And similarly for y. You'll have to set up a similar (reflected) check for the opposite boundaries in each dimension.
At each step, you can calculate the projected/expected position of the circle for the next frame.
If this lies outside the rectangle, then you can then use the distance from the old circle position to the rectangle's edge and the amount "past" the rectangle's edge that the next position lies at (the interpenetration) to linearly interpolate and determine the precise time when the circle "hits" the rectangle edge.
For example, if the circle is 10 pixels away from the rectangle's edge, then is predicted to move to 5 pixels beyond it, you know that for 2/3rds of the timestep (10/15ths) it moves on its orginal path, then is reflected and continues on its new path for the remaining 1/3rd of the timestep (5/15ths). By calculating these two parts of the motion and "adding" the translations together, you can find the correct new position.
(Of course, it gets more complicated if you hit near a corner, as there may be several collisions during the timestep, off different edges. And if you have more than one circle moving, things get a lot more complex. But that's where you can start for the case you've asked about)
Reflection across a rectangular boundary is incredibly simple. Just take the amount that the object passed the boundary and subtract it from the boundary position. If the position without reflecting would be (-0.8,-0.2) for example and the upper left corner is at (0,0), the reflected position would be (0.8,0.2).
My question is fairly simple. I have two tetrahedra, each with a current position, a linear speed in space, an angular velocity and a center of mass (center of rotation, actually).
Having this data, I am trying to find a (fast) algorithm which would precisely determine (1) whether they would collide at some point in time, and if it is the case, (2) after how much time they collided and (3) the point of collision.
Most people would solve this by doing triangle-triangle collision detection, but this would waste a few CPU cycles on redundant operations such as checking the same edge of one tetrahedron against the same edge of the other tetrahedron upon checking up different triangles. This only means I'll optimize things a bit. Nothing to worry about.
The problem is that I am not aware of any public CCD (continuous collision detection) triangle-triangle algorithm which takes self-rotation in account.
Therefore, I need an algorithm which would be inputted the following data:
vertex data for three triangles
position and center of rotation/mass
linear velocity and angular velocity
And would output the following:
Whether there is a collision
After how much time the collision occurred
In which point in space the collision occurred
Thanks in advance for your help.
The commonly used discrete collision detection would check the triangles of each shape for collision, over successive discrete points in time. While straightforward to compute, it could miss a fast moving object hitting another one, due to the collision happening between discrete points in time tested.
Continuous collision detection would first compute the volumes traced by each triangle over an infinity of time. For a triangle moving at constant speed and without rotation, this volume could look like a triangular prism. CCD would then check for collision between the volumes, and finally trace back if and at what time the triangles actually shared the same space.
When angular velocity is introduced, the volume traced by each triangle no longer looks like a prism. It might look more like the shape of a screw, like a strand of DNA, or some other non-trivial shapes you might get by rotating a triangle around some arbitrary axis while dragging it linearly. Computing the shape of such volume is no easy feat.
One approach might first compute the sphere that contains an entire tetrahedron when it is rotating at the given angular velocity vector, if it was not moving linearly. You can compute a rotation circle for each vertex, and derive the sphere from that. Given a sphere, we can now approximate the extruded CCD volume as a cylinder with the radius of the sphere and progressing along the linear velocity vector. Finding collisions of such cylinders gets us a first approximation for an area to search for collisions in.
A second, complementary approach might attempt to approximate the actual volume traced by each triangle by breaking it down into small, almost-prismatic sub-volumes. It would take the triangle positions at two increments of time, and add surfaces generated by tracing the triangle vertices at those moments. It's an approximation because it connects a straight line rather than an actual curve. For the approximation to avoid gross errors, the duration between each successive moments needs to be short enough such that the triangle only completes a small fraction of a rotation. The duration can be derived from the angular velocity.
The second approach creates many more polygons! You can use the first approach to limit the search volume, and then use the second to get higher precision.
If you're solving this for a game engine, you might find the precision of above sufficient (I would still shudder at the computational cost). If, rather, you're writing a CAD program or working on your thesis, you might find it less than satisfying. In the latter case, you might want to refine the second approach, perhaps by a better geometric description of the volume occupied by a turning, moving triangle -- when limited to a small turn angle.
I have spent quite a lot of time wondering about geometry problems like this one, and it seems like accurate solutions, despite their simple statements, are way too complicated to be practical, even for analogous 2D cases.
But intuitively I see that such solutions do exist when you consider linear translation velocities and linear angular velocities. Don't think you'll find the answer on the web or in any book because what we're talking about here are special, yet complex, cases. An iterative solution is probably what you want anyway -- the rest of the world is satisfied with those, so why shouldn't you be?
If you were trying to collide non-rotating tetrahedra, I'd suggest a taking the Minkowski sum and performing a ray check, but that won't work with rotation.
The best I can come up with is to perform swept-sphere collision using their bounding spheres to give you a range of times to check using bisection or what-have-you.
Here's an outline of a closed-form mathematical approach. Each element of this will be easy to express individually, and the final combination of these would be a closed form expression if one could ever write it out:
1) The equation of motion for each point of the tetrahedra is fairly simple in it's own coordinate system. The motion of the center of mass (CM) will just move smoothly along a straight line and the corner points will rotate around an axis through the CM, assumed to be the z-axis here, so the equation for each corner point (parameterized by time, t) is p = vt + x + r(sin(wt+s)i + cos(wt + s)j ), where v is the vector velocity of the center of mass; r is the radius of the projection onto the x-y plane; i, j, and k are the x, y and z unit vectors; and x and s account for the starting position and phase of rotation at t=0.
2) Note that each object has it's own coordinate system to easily represent the motion, but to compare them you'll need to rotate each into a common coordinate system, which may as well be the coordinate system of the screen. (Note though that the different coordinate systems are fixed in space and not traveling with the tetrahedra.) So determine the rotation matrices and apply them to each trajectory (i.e. the points and CM of each of the tetrahedra).
3) Now you have an equation for each trajectory all within the same coordinate system and you need to find the times of the intersections. This can be found by testing whether any of the line segments from the points to the CM of a tetrahedron intersects the any of the triangles of another. This also has a closed-form expression, as can be found here.
Layering these steps will make for terribly ugly equations, but it wouldn't be hard to solve them computationally (although with the rotation of the tetrahedra you need to be sure not to get stuck in a local minimum). Another option might be to plug it into something like Mathematica to do the cranking for you. (Not all problems have easy answers.)
Sorry I'm not a math boff and have no idea what the correct terminology is. Hope my poor terms don't hide my meaning too much.
Pick some arbitrary timestep.
Compute the bounds of each shape in two dimensions perpendicular to the axis it is moving on for the timestep.
For a timestep:
If the shaft of those bounds for any two objects intersect, half timestep and start recurse in.
A kind of binary search of increasingly fine precision to discover the point at which a finite intersection occurs.
Your problem can be cast into a linear programming problem and solved exactly.
First, suppose (p0,p1,p2,p3) are the vertexes at time t0, and (q0,q1,q2,q3) are the vertexes at time t1 for the first tetrahedron, then in 4d space-time, they fill the following 4d closed volume
V = { (r,t) | (r,t) = a0 (p0,t0) + … + a3 (p3,t0) + b0 (q0,t1) + … + b3 (q3,t1) }
Here the a0...a3 and b0…b3 parameters are in the interval [0,1] and sum to 1:
a0+a1+a2+a3+b0+b1+b2+b3=1
The second tetrahedron is similarly a convex polygon (add a ‘ to everything above to define V’ the 4d volume for that moving tetrahedron.
Now the intersection of two convex polygon is a convex polygon. The first time this happens would satisfy the following linear programming problem:
If (p0,p1,p2,p3) moves to (q0,q1,q2,q3)
and (p0’,p1’,p2’,p3’) moves to (q0’,q1’,q2’,q3’)
then the first time of intersection happens at points/times (r,t):
Minimize t0*(a0+a1+a2+a3)+t1*(b0+b1+b2+b3) subject to
0 <= ak <=1, 0<=bk <=1, 0 <= ak’ <=1, 0<=bk’ <=1, k=0..4
a0*(p0,t0) + … + a3*(p3,t0) + b0*(q0,t1) + … + b3*(q3,t1)
= a0’*(p0’,t0) + … + a3’*(p3’,t0) + b0’*(q0’,t1) + … + b3’*(q3’,t1)
The last is actually 4 equations, one for each dimension of (r,t).
This is a total of 20 linear constraints of the 16 values ak,bk,ak', and bk'.
If there is a solution, then
(r,t)= a0*(p0,t0) + … + a3*(p3,t0) + b0*(q0,t1) + … + b3*(q3,t1)
Is a point of first intersection. Otherwise they do not intersect.
Thought about this in the past but lost interest... The best way to go about solving it would be to abstract out one object.
Make a coordinate system where the first tetrahedron is the center (barycentric coords or a skewed system with one point as the origin) and abstract out the rotation by making the other tetrahedron rotate around the center. This should give you parametric equations if you make the rotation times time.
Add the movement of the center of mass towards the first and its spin and you have a set of equations for movement relative to the first (distance).
Solve for t where the distance equals zero.
Obviously with this method the more effects you add (like wind resistance) the messier the equations get buts its still probably the simplest (almost every other collision technique uses this method of abstraction). The biggest problem is if you add any effects that have feedback with no analytical solution the whole equation becomes unsolvable.
Note: If you go the route of of a skewed system watch out for pitfalls with distance. You must be in the right octant! This method favors vectors and quaternions though, while the barycentric coords favors matrices. So pick whichever your system uses most effectively.
I was asking myself if there are examples online which covers how you can for instance detect shapes in touch gestures.
for example a rectangle or a circle (or more complex a heart .. )
or determine the speed of swiping (over time ( like i'm swiping my iphone against 50mph ))
For very simple gestures (horizontal vs. vertical swipe), calculate the difference in x and y between two touches.
dy = abs(y2 - y1)
dx = abs(x2 - x1)
f = dy/dx
An f close to zero is a horizontal swipe. An f close to 1 is a diagonal swipe. And a very large f is a vertical swipe (keep in mind that dx could be zero, so the above won't yield valid results for all x and y).
If you're interested in speed, pythagoras can help. The length of the distance travelled between two touches is:
l = sqrt(dx*dx + dy*dy)
If the touches happened at times t1 and t2, the speed is:
tdiff = abs(t2 - t1)
s = l/tdiff
It's up to you to determine which value of s you interpret as fast or slow.
You can extend this approach for more complex figures, e.g. your square shape could be a horizontal/vertical/horizontal/vertical swipe with start/end points where the previous swipe stopped.
For more complex figures, it's probably better to work with an idealized shape. One could consider a polygon shape as the ideal, and check if a range of touches
don't have too high a distance to their closest point on the pologyon's outline, and
all touches follow the same direction along the polygon's outline.
You can refine things further from there.
There does exist other methods for detecting non-simple touches on a touchscreen. Check out the $1 unistroke gesture recognizer at the University of Washington. http://depts.washington.edu/aimgroup/proj/dollar/
It basically works like this:
Resample the recorded path into a fixed number of points that are evenly spaced along the path
Rotating the path so that the first point is directly to the right of the path’s center of mass
Scaling the path (non-uniformly) to a fixed height and width
For each reference path, calculating the average distance for the corresponding points in the input path. The path with the lowest average point distance is the match.
What’s great is that the output of steps 1-3 is a reference path that can be added to the array of known gestures. This makes it extremely easy to give your application gesture support and create your own set of custom gestures, as you see fit.
This has been ported to iOS by Adam Preble, repo on github:
http://github.com/preble/GLGestureRecognizer