On boto I used to specify my credentials when connecting to S3 in such a way:
import boto
from boto.s3.connection import Key, S3Connection
S3 = S3Connection( settings.AWS_SERVER_PUBLIC_KEY, settings.AWS_SERVER_SECRET_KEY )
I could then use S3 to perform my operations (in my case deleting an object from a bucket).
With boto3 all the examples I found are such:
import boto3
S3 = boto3.resource( 's3' )
S3.Object( bucket_name, key_name ).delete()
I couldn't specify my credentials and thus all attempts fail with InvalidAccessKeyId error.
How can I specify credentials with boto3?
You can create a session:
import boto3
session = boto3.Session(
aws_access_key_id=settings.AWS_SERVER_PUBLIC_KEY,
aws_secret_access_key=settings.AWS_SERVER_SECRET_KEY,
)
Then use that session to get an S3 resource:
s3 = session.resource('s3')
You can get a client with new session directly like below.
s3_client = boto3.client('s3',
aws_access_key_id=settings.AWS_SERVER_PUBLIC_KEY,
aws_secret_access_key=settings.AWS_SERVER_SECRET_KEY,
region_name=REGION_NAME
)
This is older but placing this here for my reference too. boto3.resource is just implementing the default Session, you can pass through boto3.resource session details.
Help on function resource in module boto3:
resource(*args, **kwargs)
Create a resource service client by name using the default session.
See :py:meth:`boto3.session.Session.resource`.
https://github.com/boto/boto3/blob/86392b5ca26da57ce6a776365a52d3cab8487d60/boto3/session.py#L265
you can see that it just takes the same arguments as Boto3.Session
import boto3
S3 = boto3.resource('s3', region_name='us-west-2', aws_access_key_id=settings.AWS_SERVER_PUBLIC_KEY, aws_secret_access_key=settings.AWS_SERVER_SECRET_KEY)
S3.Object( bucket_name, key_name ).delete()
I'd like expand on #JustAGuy's answer. The method I prefer is to use AWS CLI to create a config file. The reason is, with the config file, the CLI or the SDK will automatically look for credentials in the ~/.aws folder. And the good thing is that AWS CLI is written in python.
You can get cli from pypi if you don't have it already. Here are the steps to get cli set up from terminal
$> pip install awscli #can add user flag
$> aws configure
AWS Access Key ID [****************ABCD]:[enter your key here]
AWS Secret Access Key [****************xyz]:[enter your secret key here]
Default region name [us-west-2]:[enter your region here]
Default output format [None]:
After this you can access boto and any of the api without having to specify keys (unless you want to use a different credentials).
If you rely on your .aws/credentials to store id and key for a user, it will be picked up automatically.
For instance
session = boto3.Session(profile_name='dev')
s3 = session.resource('s3')
This will pick up the dev profile (user) if your credentials file contains the following:
[dev]
aws_access_key_id = AAABBBCCCDDDEEEFFFGG
aws_secret_access_key = FooFooFoo
region=op-southeast-2
There are numerous ways to store credentials while still using boto3.resource().
I'm using the AWS CLI method myself. It works perfectly.
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html?fbclid=IwAR2LlrS4O2gYH6xAF4QDVIH2Q2tzfF_VZ6loM3XfXsPAOR4qA-pX_qAILys
you can set default aws env variables for secret and access keys - that way you dont need to change default client creation code - though it is better to pass it as a parameter if you have non-default creds
Related
I'm trying to adapt the open-source project mmfashion on Amazon SageMaker that requires the CEPH module for backend. Unfortunately pip install ceph doesn't work. The only work-around was to build the ceph source-code manually by running in my container:
!git clone git://github.com/ceph/ceph
!git submodule update --init --recursive
This does allow me to import ceph successfully. But it throws the following error when it comes to fecthing data from Amazon S3:
AttributeError: module 'ceph' has no attribute 'S3Client'
Has someone integrated CEPH with Amazon S3 Bucket or has suggestions in the same line on how to tackle this?
you can use ceph S3 api to connect to AWS buckets , here is the simple python example script to connect to any S3 api :
import boto
import boto.s3.connection
access_key = 'put your access key here!'
secret_key = 'put your secret key here!'
conn = boto.connect_s3(
aws_access_key_id = access_key,
aws_secret_access_key = secret_key,
host = 'objects.dreamhost.com',
#is_secure=False, # uncomment if you are not using ssl
calling_format = boto.s3.connection.OrdinaryCallingFormat(),
)
then you will be able to list the buckets :
for bucket in conn.get_all_buckets():
print "{name}\t{created}".format(
name = bucket.name,
created = bucket.creation_date,
)
I am trying to move my python code to Airflow. I have the following code snippet:
s3_client = boto3.client('s3',
region_name="us-west-2",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key)
I am trying to recreate this s3_client using Aiflow's s3 hook and s3 connection but cant find a way to do it in any documentation without specifying the aws_access_key_id and the aws_secret_access_key directly in code.
Any help would be appreciated
You need to define aws connection in Admin -> Connections or with cli (see docs).
Once the connection defined you can use it in S3Hook.
Your connection object can be set as:
Conn Id: <your_choice_of_conn_id_name>
Conn Type: Amazon Web Services
Login: <aws_access_key>
Password: <aws_secret_key>
Extra: {"region_name": "us-west-2"}
In Airflow the hooks wrap a python package. Thus if your code uses hook there shouldn't be a reason to import boto3 directly.
In attempt to setup airflow logging to localstack s3 buckets, for local and kubernetes dev environments, I am following the airflow documentation for logging to s3. To give a little context, localstack is a local AWS cloud stack with AWS services including s3 running locally.
I added the following environment variables to my airflow containers similar to this other stack overflow post in attempt to log to my local s3 buckets. This is what I added to docker-compose.yaml for all airflow containers:
- AIRFLOW__CORE__REMOTE_LOGGING=True
- AIRFLOW__CORE__REMOTE_BASE_LOG_FOLDER=s3://local-airflow-logs
- AIRFLOW__CORE__REMOTE_LOG_CONN_ID=MyS3Conn
- AIRFLOW__CORE__ENCRYPT_S3_LOGS=False
I've also added my localstack s3 creds to airflow.cfg
[MyS3Conn]
aws_access_key_id = foo
aws_secret_access_key = bar
aws_default_region = us-east-1
host = http://localstack:4572 # s3 port. not sure if this is right place for it
Additionally, I've installed apache-airflow[hooks], and apache-airflow[s3], though it's not clear which one is really needed based on the documentation.
I've followed the steps in a previous stack overflow post in attempt verify if the S3Hook can write to my localstack s3 instance:
from airflow.hooks import S3Hook
s3 = S3Hook(aws_conn_id='MyS3Conn')
s3.load_string('test','test',bucket_name='local-airflow-logs')
But I get botocore.exceptions.NoCredentialsError: Unable to locate credentials.
After adding credentials to airflow console under /admin/connection/edit as depicted:
this is the new exception, botocore.exceptions.ClientError: An error occurred (InvalidAccessKeyId) when calling the PutObject operation: The AWS Access Key Id you provided does not exist in our records. is returned. Other people have encountered this same issue and it may have been related to networking.
Regardless, a programatic setup is needed, not a manual one.
I was able to access the bucket using a standalone Python script (entering AWS credentials explicitly with boto), but it needs to work as part of airflow.
Is there a proper way to set up host / port / credentials for S3Hook by adding MyS3Conn to airflow.cfg?
Based on the airflow s3 hooks source code, it seems a custom s3 URL may not yet be supported by airflow. However, based on the airflow aws_hook source code (parent) it seems it should be possible to set the endpoint_url including port, and it should be read from airflow.cfg.
I am able to inspect and write to my s3 bucket in localstack using boto alone. Also, curl http://localstack:4572/local-mochi-airflow-logs returns the contents of the bucket from the airflow container. And aws --endpoint-url=http://localhost:4572 s3 ls returns Could not connect to the endpoint URL: "http://localhost:4572/".
What other steps might be needed to log to localstack s3 buckets from airflow running in docker, with automated setup and is this even supported yet?
I think you're supposed to use localhost not localstack for the endpoint, e.g. host = http://localhost:4572.
In Airflow 1.10 you can override the endpoint on a per-connection basis but unfortunately it only supports one endpoint at a time so you'd be changing it for all AWS hooks using the connection. To override it, edit the relevant connection and in the "Extra" field put:
{"host": "http://localhost:4572"}
I believe this will fix it?
I managed to make this work by referring to this guide. Basically you need to create a connection using the Connection class and pass the credentials that you need, in my case I needed AWS_SESSION_TOKEN, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, REGION_NAME to make this work. Use this function as a python_callable in a PythonOperator which should be the first part of the DAG.
import os
import json
from airflow.models.connection import Connection
from airflow.exceptions import AirflowFailException
def _create_connection(**context):
"""
Sets the connection information about the environment using the Connection
class instead of doing it manually in the Airflow UI
"""
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_SESSION_TOKEN = os.getenv("AWS_SESSION_TOKEN")
REGION_NAME = os.getenv("REGION_NAME")
credentials = [
AWS_SESSION_TOKEN,
AWS_ACCESS_KEY_ID,
AWS_SECRET_ACCESS_KEY,
REGION_NAME,
]
if not credentials or any(not credential for credential in credentials):
raise AirflowFailException("Environment variables were not passed")
extras = json.dumps(
dict(
aws_session_token=AWS_SESSION_TOKEN,
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=REGION_NAME,
),
)
try:
Connection(
conn_id="s3_con",
conn_type="S3",
extra=extras,
)
except Exception as e:
raise AirflowFailException(
f"Error creating connection to Airflow :{e!r}",
)
I'm trying to read files from S3 using Pyspark using temporary session credentials but keep getting the error:
Received error response: com.amazonaws.services.s3.model.AmazonS3Exception: Status Code: 403, AWS Service: null, AWS Request ID: XXXXXXXX, AWS Error Code: null, AWS Error Message: Forbidden, S3 Extended Request ID: XXXXXXX
I think the issue might be that the S3A connection needs to use org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider in order to pull in the session token in addition to the standard access key and secret key, but even with setting the fs.s3a.aws.credentials.provider configuration variable, it is still attempting to authenticate with BasicAWSCredentialsProvider. Looking at the logs I see:
DEBUG AWSCredentialsProviderChain:105 - Loading credentials from BasicAWSCredentialsProvider
I've followed the directions here to add the necessary configuration values, but they do not seem to make any difference. Here is the code I'm using to set it up:
import os
import sys
import pyspark
from pyspark.sql import SQLContext
from pyspark.context import SparkContext
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages com.amazonaws:aws-java-sdk-pom:1.11.83,org.apache.hadoop:hadoop-aws:2.7.3 pyspark-shell'
sc = SparkContext()
sc.setLogLevel("DEBUG")
sc._jsc.hadoopConfiguration().set("fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider")
sc._jsc.hadoopConfiguration().set("fs.s3a.access.key", os.environ.get("AWS_ACCESS_KEY_ID"))
sc._jsc.hadoopConfiguration().set("fs.s3a.secret.key", os.environ.get("AWS_SECRET_ACCESS_KEY"))
sc._jsc.hadoopConfiguration().set("fs.s3a.session.token", os.environ.get("AWS_SESSION_TOKEN"))
sql_context = SQLContext(sc)
Why is TemporaryAWSCredentialsProvider not being used?
Which Hadoop version are you using?
S3A STS support was added in Hadoop 2.8.0, and this was the exact error message i got on Hadoop 2.7.
Wafle is right, its 2.8+ only.
But you might be able to get away with setting the AWS_ environment variables and have the session secrets being picked up that way, as AWS environment variable support has long been in there, and I think it will pick up the AWS_SESSION_TOKEN
See AWS docs
We just started using Apache airflow in our project for our data pipelines .While exploring the features came to know about configuring remote folder as log destination in airflow .For that we
Created a google cloud bucket.
From Airflow UI created a new GS connection
I am not able to understand all the fields .I just created a sample GS Bucket under my project from google console and gave that project ID to this Connection.Left key file path and scopes as blank.
Then edited airflow.cfg file as follows
remote_base_log_folder = gs://my_test_bucket/
remote_log_conn_id = test_gs
After this changes restarted the web server and scheduler .But still my Dags is not writing logs to the GS bucket .I am able to see the logs which is creating logs in base_log_folder .But nothing is created in my bucket .
Is there any extra configuration needed from my side to get it working
Note: Using Airflow 1.8 .(Same issue I faced with AmazonS3 also. )
Updated on 20/09/2017
Tried the GS method attaching screenshot
Still I am not getting logs in the bucket
Thanks
Anoop R
I advise you to use a DAG to connect airflow to GCP instead of UI.
First, create a service account on GCP and download the json key.
Then execute this DAG (you can modify the scope of your access):
from airflow import DAG
from datetime import datetime
from airflow.operators.python_operator import PythonOperator
def add_gcp_connection(ds, **kwargs):
"""Add a airflow connection for GCP"""
new_conn = Connection(
conn_id='gcp_connection_id',
conn_type='google_cloud_platform',
)
scopes = [
"https://www.googleapis.com/auth/pubsub",
"https://www.googleapis.com/auth/datastore",
"https://www.googleapis.com/auth/bigquery",
"https://www.googleapis.com/auth/devstorage.read_write",
"https://www.googleapis.com/auth/logging.write",
"https://www.googleapis.com/auth/cloud-platform",
]
conn_extra = {
"extra__google_cloud_platform__scope": ",".join(scopes),
"extra__google_cloud_platform__project": "<name_of_your_project>",
"extra__google_cloud_platform__key_path": '<path_to_your_json_key>'
}
conn_extra_json = json.dumps(conn_extra)
new_conn.set_extra(conn_extra_json)
session = settings.Session()
if not (session.query(Connection).filter(Connection.conn_id ==
new_conn.conn_id).first()):
session.add(new_conn)
session.commit()
else:
msg = '\n\tA connection with `conn_id`={conn_id} already exists\n'
msg = msg.format(conn_id=new_conn.conn_id)
print(msg)
dag = DAG('add_gcp_connection', start_date=datetime(2016,1,1), schedule_interval='#once')
# Task to add a connection
AddGCPCreds = PythonOperator(
dag=dag,
task_id='add_gcp_connection_python',
python_callable=add_gcp_connection,
provide_context=True)
Thanks to Yu Ishikawa for this code.
Yes, you need to provide additional information for both, S3 and GCP connection.
S3
Configuration is passed via extra field as JSON. You can provide only profile
{"profile": "xxx"}
or credentials
{"profile": "xxx", "aws_access_key_id": "xxx", "aws_secret_access_key": "xxx"}
or path to config file
{"profile": "xxx", "s3_config_file": "xxx", "s3_config_format": "xxx"}
In case of the first option, boto will try to detect your credentials.
Source code - airflow/hooks/S3_hook.py:107
GCP
You can either provide key_path and scope (see Service account credentials) or credentials will be extracted from your environment in this order:
Environment variable GOOGLE_APPLICATION_CREDENTIALS pointing to a file with stored credentials information.
Stored "well known" file associated with gcloud command line tool.
Google App Engine (production and testing)
Google Compute Engine production environment.
Source code - airflow/contrib/hooks/gcp_api_base_hook.py:68
The reason for logs not being written to your bucket could be related to service account rather than config on airflow itself. Make sure it has access to the mentioned bucket. I had same problems in the past.
Adding more generous permissions to the service account, e.g. even project wide Editor and then narrowing it down. You could also try using gs client with that key and see if you can write to the bucket.
For me personally this scope works fine for writing logs: "https://www.googleapis.com/auth/cloud-platform"