SQL deadlock on multiple inserts and cascade deletes - sql

I have 8 tables. A multi threaded simultaneous process, using entity framework, that first deletes the master record causing a cascaded delete to child records and then reinserts the data, no updates.
Because of the way the keys are aligned, inserts and deletes happen in a specific order. To be precise in the exact opposite order, also some records might not have data for a given table. (I think) when the locks are escalated from row to table, for whatever reason that SQL thinks it's right, it causes deadlock, which makes perfect sense. I am guessing the more sparse data I will have the less this will happen since escalation will be on row.
Is there a named term for this?
I am looking for a solution that does not interfere with SQL plan as well as SQL locking but its done via data process while keeping the max degree of parallelism.

Related

Postgres - Deadlock while updating a column that is also part of where clause

My colleague at work and I were wondering if, during an update, a column is being updated while the same column is used in where clause, there are chances of deadlock.
For ex:
UPDATE EMPLOYEES
SET DEPT_ID = NULL
WHERE DEPT_ID = 13;
So if the table EMPLOYEES contains about a million records, are there chances of deadlock?
There is no chance for a deadlock at all. Not only will a single query never deadlock itself in Postgres (see comments), there is also no chance for a deadlock in combination with the same query in a concurrent transactions.
The minimum "requirements" for a deadlock:
At least two competing concurrent transactions.
Each of both must lock a resource that one of the others will try to access later.
Each of both must later try to access a resource locked by the other transaction. So that at least two wait for the other to finish.
In theory two concurrent, identical calls like you display have the potential for a deadlock if there are multiple rows with the same DEPT_IT. Since there is no ORDER BY for a DELETE, it can take an exclusive row lock on rows to delete in any arbitrary order. Two identical commands might start with different rows and end up deadlocking each other.
In practice, this is not going to happen because both concurrent deletes will take locks in the same order thereby voiding any potential for deadlocks. We would need additional concurrent transactions or more commands in the same transaction trying to lock resources out of order.
But all of this is completely unrelated to the fact that a column to be updated is also in the WHERE clause. (Even if indexes on the column are involved.) Due to the MVCC model of Postgres, it writes a new row version anyway, no matter which columns are actually updated.
If you should run into deadlocks involving out-of-order row locks, you can solve it using SELECT .. FOR UPDATE with a deterministic ORDER BY in a subquery:
Avoiding PostgreSQL deadlocks when performing bulk update and delete operations
Postgres, update and lock ordering

amazon redshift concurrent write results in inserted records, causing duplicates

I have been trying to solve a problem where two concurrent updates on the same table are causing additional records to be created/inserted. Never experienced this in any other relational database, and nor would i. So i believe it's potential a quirk in redshifts architecture of distributing queries across multiple nodes, however cannot pinpoint or provide a real world example.
Before these two updates are run, i insert new data into the table. The insert contains a daily snapshot that fills out one day of data, most columns have empty values ready for the updates to populate them.
The updates are run concurrently, which are simple update sql's, updating their respective columns. If run individually i do not see additional records created and no duplication.
The updates operate across the entire table, over 200 million records, however the duplication occurs only in the records that where populated recently(the new data for that days period.
This is kind of a worry, as i would never assume an update would ever create new records, addition to the records created with the first insert.
What is even more bizzare is that the duplicate records hold different data.
I have checked to veryify that no other queries are running beyond the expected, by looking at redshifts query logs (stl_query).
I find really hard to believe that an update created new values, are you really sure about this?
I've been trough complicate situations when It comes to concurrent transactions on the same table, so what I suggest is that you explicitly lock your table with:
lock table <table> in exclusive mode;
before you manipulate it (exclusive mode will allow reads but any write attempt will have to wait)
If you don't and 2 transactions try to update (Inserts are fine, BTW) the same table, you are most likely yo get a "ERROR: 1023 - DETAIL: Serializable isolation violation on table" - or the behavior you are reporting

SQL transaction affecting a big amount of rows

The situation is as follows:
A big production client/server system where one central database table has a certain column that has had NULL as default value but now has 0 as default value. But all the rows created before that change of course still have value as null and that generates a lot of unnecessary error messages in this system.
Solution is of course simple as that:
update theTable set theColumn = 0 where theColumn is null
But I guess it's gonna take a lot of time to complete this transaction? Apart from that, will there be any other issues I should think of before I do this? Will this big transaction block the whole database, or that particular table during the whole update process?
This particular table has about 550k rows and 500k of them has null value and will be affected by the above sql statement.
The impact on the performance of other connected clients depends on:
How fast the servers hardware is
How many indexes containing the column your update statement has to update
Which transaction isolation settings the other clients connect to the database
The db engine will acquire write locks, so when your clients only need read access to the table, it should not be a big problem.
500.000 records sounds not too much for me, but as i said, the time and resources the update takes depends on many factors.
Do you have a similar test system, where you can try out the update?
Another solution is to split the one big update into many small ones and call them in a loop.
When you have clients writing frequently to that table, your update statement might get blocked "forever". I have seen databases where performing the update row by row was the only way of getting the update through. But that was a table with about 200.000.000 records and about 500 very active clients!
it's gonna take a lot of time to complete this transaction
there's no definite way to say this. Depends a lot on the hardware, number of concurrent sessions, whether the table has got locks, the number of interdependent triggers et al.
Will this big transaction block the whole database, or that particular table during the whole update process
If the "whole database" is dependent on this table then it might.
will there be any other issues I should think of before I do this
If the table has been locked by other transaction - you might run into a row-lock situation. In rare cases, perhaps a dead lock situation. Best would be to ensure that no one is utilizing the table, check for any pre-exising locks and then run the statement.
Locking issues are vendor specific.
Asuming no triggers on the table, half a million rows is not much for a dediated database server even with many indexes on the table.

Optimizing Delete on SQL Server

Deletes on sql server are sometimes slow and I've been often in need to optimize them in order to diminish the needed time.
I've been googleing a bit looking for tips on how to do that, and I've found diverse suggestions.
I'd like to know your favorite and most effective techinques to tame the delete beast, and how and why they work.
until now:
be sure foreign keys have indexes
be sure the where conditions are indexed
use of WITH ROWLOCK
destroy unused indexes, delete, rebuild the indexes
now, your turn.
The following article, Fast Ordered Delete Operations may be of interest to you.
Performing fast SQL Server delete operations
The solution focuses on utilising a view in order to simplify the execution plan produced for a batched delete operation. This is achieved by referencing the given table once, rather than twice which in turn reduces the amount of I/O required.
I have much more experience with Oracle, but very likely the same applies to SQL Server as well:
when deleting a large number of rows, issue a table lock, so the database doesn't have to do lots of row locks
if the table you delete from is referenced by other tables, make sure those other tables have indexes on the foreign key column(s) (otherwise the database will do a full table scan for each deleted row on the other table to ensure that deleting the row doesn't violate the foreign key constraint)
I wonder if it's time for garbage-collecting databases? You mark a row for deletion and the server deletes it later during a sweep. You wouldn't want this for every delete - because sometimes a row must go now - but it would be handy on occasion.
Summary of Answers through 2014-11-05
This answer is flagged as community wiki since this is an ever-evolving topic with a lot of nuances, but very few possible answers overall.
The first issue is you must ask yourself what scenario you're optimizing for? This is generally either performance with a single user on the db, or scale with many users on the db. Sometimes the answers are the exact opposite.
For single user optimization
Hint a TABLELOCK
Remove indexes not used in the delete then rebuild them afterward
Batch using something like SET ROWCOUNT 20000 (or whatever, depending on log space) and loop (perhaps with a WAITFOR DELAY) until you get rid of it all (##ROWCOUNT = 0)
If deleting a large % of table, just make a new one and delete the old table
Partition the rows to delete, then drop the parition. [Read more...]
For multi user optimization
Hint row locks
Use the clustered index
Design clustered index to minimize page re-organization if large blocks are deleted
Update "is_deleted" column, then do actual deletion later during a maintenance window
For general optimization
Be sure FKs have indexes on their source tables
Be sure WHERE clause has indexes
Identify the rows to delete in the WHERE clause with a view or derived table instead of referencing the table directly. [Read more...]
To be honest, deleting a million rows from a table scales just as badly as inserting or updating a million rows. It's the size of the rowset that's the problem, and there's not much you can do about that.
My suggestions:
Make sure that the table has a primary key and clustered index (this is vital for all operations).
Make sure that the clustered index is such that minimal page re-organisation would occur if a large block of rows were to be deleted.
Make sure that your selection criteria are SARGable.
Make sure that all your foreign key constraints are currently trusted.
(if the indexes are "unused", why are they there at all?)
One option I've used in the past is to do the work in batches. The crude way would be to use SET ROWCOUNT 20000 (or whatever) and loop (perhaps with a WAITFOR DELAY) until you get rid of it all (##ROWCOUNT = 0).
This might help reduce the impact upon other systems.
The problem is you haven't defined your conditions enough. I.e. what exactly are you optimizing?
For example, is the system down for nightly maintenance and no users are on the system? And are you deleting a large % of the database?
If offline and deleting a large %, may make sense to just build a new table with data to keep, drop the old table, and rename. If deleting a small %, you likely want to batch things in as large batches as your log space allows. It entirely depends on your database, but dropping indexes for the duration of the rebuild may hurt or help -- if even possible due to being "offline".
If you're online, what's the likelihood your deletes are conflicting with user activity (and is user activity predominantly read, update, or what)? Or, are you trying to optimize for user experience or speed of getting your query done? If you're deleting from a table that's frequently updated by other users, you need to batch but with smaller batch sizes. Even if you do something like a table lock to enforce isolation, that doesn't do much good if your delete statement takes an hour.
When you define your conditions better, you can pick one of the other answers here. I like the link in Rob Sanders' post for batching things.
If you have lots of foreign key tables, start at the bottom of the chain and work up. The final delete will go faster and block less things if there are no child records to cascade delete (which I would NOT turn on if I had a large number fo child tables as it will kill performance).
Delete in batches.
If you have foreign key tables that are no longer being used (you'd be surprised how often production databses end up with old tables nobody will get rid of), get rid of them or at least break the FK/PK connection. No sense cheking a table for records if it isn't being used.
Don't delete - mark records as delted and then exclude marked records from all queries. This is best set up at the time of database design. A lot of people use this because it is also the best fastest way to get back records accidentlally deleted. But it is a lot of work to set up in an already existing system.
I'll add another one to this:
Make sure your transaction isolation level and database options are set appropriately. If your SQL server is set not to use row versioning, or you're using an isolation level on other queries where you will wait for the rows to be deleted, you could be setting yourself up for some very poor performance while the operation is happening.
On very large tables where you have a very specific set of criteria for deletes, you could also partition the table, switch out the partition, and then process the deletions.
The SQLCAT team has been using this technique on really really large volumes of data. I found some references to it here but I'll try and find something more definitive.
I think, the big trap with delete that kill the performance is that sql after each row deleted, it updates all the related indexes for any column in this row. what about delting all indexes before bulk delete?
There are deletes and then there are deletes. If you are aging out data as part of a trim job, you will hopefully be able to delete contiguous blocks of rows by clustered key. If you have to age out data from a high volume table that is not contiguous it is very very painful.
If it is true that UPDATES are faster than DELETES, you could add a status column called DELETED and filter on it in your selects. Then run a proc at night that does the actual deletes.
Do you have foreign keys with referential integrity activated?
Do you have triggers active?
Simplify any use of functions in your WHERE clause! Example:
DELETE FROM Claims
WHERE dbo.YearMonthGet(DataFileYearMonth) = dbo.YearMonthGet(#DataFileYearMonth)
This form of the WHERE clause required 8 minutes to delete 125,837 records.
The YearMonthGet function composed a date with the year and month from the input date and set day = 1. This was to ensure we deleted records based on year and month but not day of month.
I rewrote the WHERE clause to:
WHERE YEAR(DataFileYearMonth) = YEAR(#DataFileYearMonth)
AND MONTH(DataFileYearMonth) = MONTH(#DataFileYearMonth)
The result: The delete required about 38-44 seconds to delete those 125,837 records!

Best practices for multithreaded processing of database records

I have a single process that queries a table for records where PROCESS_IND = 'N', does some processing, and then updates the PROCESS_IND to 'Y'.
I'd like to allow for multiple instances of this process to run, but don't know what the best practices are for avoiding concurrency problems.
Where should I start?
The pattern I'd use is as follows:
Create columns "lockedby" and "locktime" which are a thread/process/machine ID and timestamp respectively (you'll need the machine ID when you split the processing between several machines)
Each task would do a query such as:
UPDATE taskstable SET lockedby=(my id), locktime=now() WHERE lockedby IS NULL ORDER BY ID LIMIT 10
Where 10 is the "batch size".
Then each task does a SELECT to find out which rows it has "locked" for processing, and processes those
After each row is complete, you set lockedby and locktime back to NULL
All this is done in a loop for as many batches as exist.
A cron job or scheduled task, periodically resets the "lockedby" of any row whose locktime is too long ago, as they were presumably done by a task which has hung or crashed. Someone else will then pick them up
The LIMIT 10 is MySQL specific but other databases have equivalents. The ORDER BY is import to avoid the query being nondeterministic.
Although I understand the intention I would disagree on going to row level locking immediately. This will reduce your response time and may actually make your situation worse. If after testing you are seeing concurrency issues with APL you should do an iterative move to “datapage” locking first!
To really answer this question properly more information would be required about the table structure and the indexes involved, but to explain further.
DOL, datarow locking uses a lot more locks than allpage/page level locking. The overhead in managing all the locks and hence the decrease of available memory due to requests for more lock structures within the cache will decrease performance and counter any gains you may have by moving to a more concurrent approach.
Test your approach without the move first on APL (all page locking ‘default’) then if issues are seen move to DOL (datapage first then datarow). Keep in mind when you switch a table to DOL all responses on that table become slightly worse, the table uses more space and the table becomes more prone to fragmentation which requires regular maintenance.
So in short don’t move to datarows straight off try your concurrency approach first then if there are issues use datapage locking first then last resort datarows.
You should enable row level locking on the table with:
CREATE TABLE mytable (...) LOCK DATAROWS
Then you:
Begin the transaction
Select your row with FOR UPDATE option (which will lock it)
Do whatever you want.
No other process can do anything to this row until the transaction ends.
P. S. Some mention overhead problems that can result from using LOCK DATAROWS.
Yes, there is overhead, though i'd hardly call it a problem for a table like this.
But if you switch to DATAPAGES then you may lock only one row per PAGE (2k by default), and processes whose rows reside in one page will not be able to run concurrently.
If we are talking of table with dozen of rows being locked at once, there hardly will be any noticeable performance drop.
Process concurrency is of much more importance for design like that.
The most obvious way is locking, if your database doesn't have locks, you could implement it yourself by adding a "Locked" field.
Some of the ways to simplify the concurrency is to randomize the access to unprocessed items, so instead of competition on the first item, they distribute the access randomly.
Convert the procedure to a single SQL statement and process multiple rows as a single batch. This is how databases are supposed to work.